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Abstract 
 

Thermal convective instability of a horizontal layer of fluid heated from below has 

several applications in geophysics, earth science, and oceanography and extensive 

reviews of this subject can be found in Chandrasekhar [1]. The onset of multi-diffusive 

convection is analyzed to include the effects of suspended particles and rotation through a 

porous medium. In the present chapter, the Brinkman model is considered for the porous 

medium. The variations in fluid density are due to the variation in ( )1n + stratifying 

components having different thermal and solute diffusivities. Linear stability analysis 

procedure along with normal mode method is employed to obtain a dispersion relation for 

the stationary convection and it is found that the parameters porosity, permeability and 

suspended particle have destabilizing effects whereas, rotation and Darcy-Brinkman 

number have stabilizing effects and the results are also shown both numerically and 

graphically. A sufficient condition for the validity of the principle of exchange of 

stabilities (PES) is also obtained using Rayleigh-Ritz and Cauchy-Schwartz inequality. 
 

Keywords: Multi-diffusive convection; suspended particles; rotation; Brinkman porous 

medium. 
 

Nomenclature Used 
 

t  Time co-ordinate,  s  

d  Depth of fluid layer,  m  
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q
 

Velocity of fluid having components ( ), ,u v w , 1
ms

− 
   

p
 

Pressure, 2
Nm or Pa

− 
 

 

0T
 

Reference temperature,  K  

T
 

Temperature,  K  

1k  Darcy-Brinkman medium permeability, 2
m 
 

 

lP
 

Dimensionless medium permeability,  −  

Tk  Coefficient of heat conduction, 1 1
Wm K

− − 
 

 

D

 

Differentiation Operator
d

dz

 
= 

 
,  −  

n  Frequency of the harmonic disturbance, 1
s
− 

 
 

iX
 

Gravitational acceleration vector ( )ig= − , 2
ms

− 
 

 

sc  Heat capacity of solid material, 1 1
Jkg K

− − 
 

 

vc  Specific heat of the fluid at constant volume, 1 1
Jkg K

− − 
 

 

1p
 

Thermal Prandtl number,  −  

2p  Magnetic Prandtl number,  −  

w  Vertical fluid velocity, 1
ms

− 
 

 

*
w  Complex conjugate of w  
H  Horizontal magnetic field having components ( ),0,0H ,   G  

h  Perturbation in magnetic field strength ( ),0,0HH ,  G  

X  Vertical component of current density after applying the normal mode method 

W  Vertical component of fluid velocity after applying normal mode method 

K  Vertical component of the magnetic field after applying the normal mode 

method 

Z  Vertical component of vorticity after applying normal mode method 

xk  Wave number in x direction, 1
m
− 

 
 

yk  Wave number in y direction, 1
m
− 

 
 

k  Resultant wave number ( ) 2 2
x yk k= + , 1

m
− 

 
 

1Q  Modified Chandrasekhar’s number,  −  

1AD  Modified Darcy-Brinkman number,  −  
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1R  Modified Darcy-Brinkman thermal Rayleigh number,  −  

1AT

 

Modified Taylor’s number,  −  

 

Greek Symbols 
 

p
 

Pressure gradient term 1
Pa m

− 
 

 

  Darcy-Brinkman medium porosity 

0  Density of fluid, 3
kgm

− 
 

 

s  Density of solid material, 3
kgm

− 
 

 

  Fluid viscosity, 1 1
kgm s

− − 
 

 

  Couple-stress fluid viscosity 1 1
kgm s

− − 
 

 

ef  Effective viscosity 1 1
kgm s

− − 
   

e  Magnetic permeability, 1
Hm

− 
 

 

  Curl Operator,  −  

  Co-efficient of thermal expansion, 1
K
− 

 
 

  Adverse temperature gradient, 1
Km

− 
 

 

  Electrical resistivity, 2 1
m s

− 
 

 

Θ temperature component after applying the normal mode method 

p  Perturbation in fluid pressure p, 2
Nm or Pa

− 
 

 

 Perturbation in fluid density  , 3
kgm

− 
 

 

  Kinematic viscosity, 2 1
m s

− 
 

 

  Kinematic viscoelasticity, 2 1
m s

− 
 

 

  Thermal diffusivity, 2 1
m s

− 
 

 

  Z-component of vorticity 

  Z-component of current density 

Ω  Horizontal rotational vector 
2


 

3-dimensional Laplacian operator,  −  

1  Modified couple-stress parameter,  −  
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  Growth rate of harmonic disturbance after applying the normal mode method, 

1
s
− 

 
 

  Perturbation in temperature T,  K  

i  Vertical unit vector,  −  

 

1 Introduction 
 

Convective instability occurs in foam under forced drainage when a critical liquid 

fraction is exceeded [2]. Thermal convective instability of a horizontal layer of fluid 

heated from below has several applications in geophysics, earth science, and 

oceanography and extensive reviews of this subject can be found in Chandrasekhar [1]. 

Rayleigh [3] laid the foundation of the linear instability theory using small infinitesimal 

perturbations. When two or more stratifying components (e.g. heat and salt diffusing at 

different rates) are present then the convective phenomenon is termed as Double-

diffusive or Multi-diffusive convection having extensive physical applications in ocean 

water, magmas, contaminant transport and underground water flow [4,5,6]. The 

investigation of stratified fluid layer has several applications in thermal stratification of 

reservoirs and oceans, density, temperature and gravitational stratification of the 

atmosphere, salinity stratification in rivers, oceans and estuaries, layer stratification in the 

earth’s interior and several heterogeneous mixtures in food processing industry [7]. 

Magneto-hydrodynamics theory of electrically conducting fluids has several scientific 

and practical applications in astrophysics, geophysics, space sciences etc [8]. 

 

The flow through a porous medium has been of fundamental importance in geothermal 

reservoirs, solidification, geothermal power resources, astrophysics, the chemical 

processing industry, the petroleum industry, and the recovery of crude oil from the 

earth’s interior [9,10]. A detailed study of convection through a porous layer can be 

found in Nield and Bejan [11]. The numerical and analytical treatment of the double-

diffusive and multi-diffusive convection saturating a porous layer is reviewed in the 

references Huppert and Turner [12], Turner [13], Terrones and Pearlstein [14], Tracey 

[15], Straughanand Tracey [16], Radko [17, Rionero [18,19], Prakash et al. [20], Kumar 

et al. [21].  

 

Convective instability in a rotating frame has numerous applications in rotating 

machinery, the food processing industry, centrifugal casting of metals and thermal power 

plants (to generate electricity by rotation of turbine blades) [6]. Rudraiah et al. [22] 

considered the effect of rotation on linear and non-linear double-diffusive convective 

problems saturating a porous layer. 

 

In a geophysical context, the fluid is often not pure but may instead be permeated with 

dust particles. These suspended particles have scientific relevance in geophysics, 

chemical engineering and astrophysics [23]. Scanlon and Segel [24] considered the effect 

of suspended particles on the onset of Bénard convection and found that the critical 

Rayleigh number was reduced solely because the heat capacity of the pure fluid was 

supplemented by that of the particles.  
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The intention of the present chapter is to analyse the onset of thermal convection in a 

multi-diffusive fluid layer in the presence of suspended dust particles, uniform vertical 

rotation saturating a porous medium. Most research outcomes for porous medium flows 

are based on the Darcy model which gives appropriate results at a small Reynolds 

number. Therefore, the Darcy-Brinkman model is employed for porous medium which is 

considered physically more realistic than the usual Darcy model and also gave 

satisfactory results at large Reynolds number and for high porosity porous medium by 

incorporating the inertial and viscous effects in addition to the usual Darcy model. The 

research on multi-component fluid layers through a porous medium has notable 

geophysical relevance in real life and is increasing with the number of salts dissolved in 

it.  

 

2 Problem Formulation and Linear Stability Analysis 
 

Consider an infinite horizontal Boussinesq fluid layer permeated with dust particles lying 

in the region 0 z d   through a Darcy-Brinkman porous medium under the effect of a 

uniform vertical rotation ( )0,0, zΩ . Both the boundaries are maintained at uniform 

temperatures ( )l uT T , uT and uniform n concentrations 

( ) ( ) ( )1 1 2 2
, ,........,

n n
l u l u l uC C C C C C    and 1 2

, ,......,
n

u u uC C C with gravity acting in 

the vertical downward direction (Fig. 1) [6].  

 

The governing equations of motion and continuity for an incompressible Oberbeck-

Boussinesq [25] fluid layer saturating a Darcy-Brinkman porous medium [26,27] are as: 

 

( ) ( )

( ) ( )

2

0 1

1 2

0 0 0 0

0

0

1

1 1
1 .......

2

ef

n

d

p v v
k

v v
v

t x

K N
v v v






  

   



 
−  − +  + 
 
     
 + = + + + + +   

         
 


 + − + 
   

g

Ω                            (1) 

 

. 0v =                (2) 

 

Where, 0 1 0, , , , , , , , , ,ef dt p v v k N and    g denote, respectively, the time, the reference 

density, fluid density, effective porosity, pressure, kinematic viscosity, effective 

kinematic viscosity, fluid velocity components, particles velocity, effective permeability, 

number density of suspended particles and the gravitational acceleration vector. The term 

( )6 being particle radius ,K   = is the Stokes drag coefficient. 

 

The presence of suspended particles adds an extra force term, in the equation of motion, 

proportional to the velocity difference between particles and fluid [6]. Since the force 

exerted by the fluid on the particles is equal and opposite to that exerted by the particles 
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on the fluid, there must be an extra force term, equal in magnitude but opposite in sign, in 

the equations of motion for the particles. Inter-particle reactions are ignored as the 

distances between the particles are assumed to be quite large compared with their 

diameters. 

 

 
 

Fig. 1. Geometrical sketch of the physical problem 

 

The equations of motion and continuity for the particles (ignoring the pressure, magnetic 

field and gravity) are as: 

 

( ) ( )0 0

1
.d

d d d

v
mN v v K N v v

t

 
+  = −   

              (3)

 

 

( )0
0. 0d

N
N v

t


 +  =


                (4) 

 

where 0mN is the mass of particles per unit volume. 

 

The equations for temperature field and solute concentrations are as: 

 

( ) ( )0 0

2
0

1 .

.

v s s v

pt d T

T
c c c v T

t

mN c v T k T
t

  


 + −  +  


 
+  +  =  

 

              (5) 

 

where,  denote, respectively, the density of solid material, the heat capacity of solid 

material, the specific heat at constant volume, the heat capacity of suspended particles, 

the temperature and the coefficient of heat conduction. 
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( ) ( )

( )

0 0

2
0

1 .

. 1, 2,...,

v s s v

pt d C

C
c c c v C

t

mN c v C k C n
t




   

  

  




  + − + 
  

 
+  +  =  = 

 

            (6) 

 

The symbols ( ), , , 1,2,,...,s v pt Cc c c C and k n
    

 = denote the analogous n solute 

components. 

 

The density is taken as a linear function of the temperature field and salt concentrations 

as: 

 

( ) ( )0

1

1

n

T l u l uC
T T C C

 



   

=

 
 = + − − −
 
 


                                           (7)

 

 

where, ( ), , , , 1,2,.....l u T C l uT T C and C n


 
   = denote, respectively, the temperature at 

the lower boundary, the temperature at the upper boundary, the coefficient of thermal 

expansion, coefficients of solute expansion, and concentration components at the lower 

and upper boundaries. 

 

The basic state is assumed to be stationary and therefore, for determining the 

stability/instability of the system linear stability analysis procedure followed by the 

normal mode method is adopted by introducing small infinitesimal perturbations in the 

basic variables (Singh et al., 2022). 

 

The basic state of the system is defined as: 

 

 

 

0

0 0 0 0

(0,0,0), (0,0,0), , 0,0, ,

1 , 1 , , .
2

d T

T
T

v v T T z

z
z p p g z N C






   

= = = −  = 

 
= + = − + 

 

             (8) 

 

Let the perturbations in the basic variables given in (8) are defined as: 

 

( )( , , ), ( , , ), , , , , , , , .d x y zv u v w v l r s p N


   = =                  (9) 

 

So, the resulting linearized perturbation equations after eliminating the pressure gradient 

term are as: 
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( )

( ) ( )

( )

2 4 2
1

1

2 2 0
1

1 0

2

1

1

2

ef T

n

C

w w g
k

mN
w g

mt

K t

w
t z







  

 





=

 
 
−  +  +  
 
 

   = −  −
     

 +     
    

 −  
    



    

                               (10)
 

 

( )2 0

1
0 11

2

ef

mN

mk

K t
t

w

t z


  





 
− +  −  
  +   

 =    
    

      +   
       

                                     (11) 

 

( ) 2
1

1

T T

b
E b w

mt

K t

  

 
  
 +  −  = +      

+     

                                         (12) 

 

( ) 2
1

1
C C

b
E b w

mt

K t

 


  

  

 
  
 +  −  = +      

+     

                            (13) 

 

The change in density  due to temperature variation  and concentration 

variations ( )1,2,...., ,n


  = is given by 

 

0

1

n

T C






     

=

 
 = − −
 
 

                              (14) 

 

where, in equations (10)-(13), 2 2
1

0 0

, , , , ,CT
T C

v v

kk v u
w s and

c x yc






  
 

  
= = = −   

  

denote, 

respectively, the thermal diffusivity, the solute diffusivity, the vertical component of fluid 

velocity, the vertical component of suspended particles velocity, the vertical component 

of vorticity, the horizontal Laplacian operator and Laplacian operator, with 
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( )

( )

0

0 0

0

0 0

1 , ,

1 .

pts s

v v

pts s

v v

mN cc
E b

c c

mN cc
E and b

c c


 

 



 



 

 
= + − = 

 

 
= + − = 

 
 

 

 

3 Normal Mode Method and Dispersion Relation 
 

A normal mode representation is assumed in various physical disturbances with a 

dependence on ,x y and t of the form: 

 

( ) ( ) ( ) ( )

( )

, , , , , ,

exp x y

w W z z Z z z

ik x ik y nt

 
     =  

   

+ +

            (15) 

where, x yk and k are the wave numbers along x and y directions, respectively. 

 

Using expression (15), the non-dimensional form of Eqs. (10) -(13) (after dropping the 

asterisk for convenience) are as: 
 

( )
( ) ( )2 2 2 2

1

2 2 3

1

1
1

1

2
0

A

l l

n

T C

M D
D a D a W

P P

ga d d
DZ







 

 
 

=

   
+ − − + −  

 +    

  
 +  −  + =

 
 



                                               (16) 

 

( )
( )2 2

1

1 2
1 0

1

A

l l

M D d
D a Z DW

P P



  

   
+ − − + + =    +    

                                   (17) 

 

( )
2

2 2 1
1 1

11

T

T

d B
D a p E W

  


  

  + − −  = −       +  

                                             (18) 

 

( )
2

2 2 1
1

11

C

C

d B
D a q E W






  

  


  

  +   − −  = −         +  

                                          (19) 

 

The above perturbation equations (16)-(19) are non-dimensionalized using the following 

scaling: 
 

2

1 2

0
0 1

1
1 12

, , , , , 1 ,

1 , , , ,

, , , .

ef l
A

l
T C

z a nd m
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 
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   

 
= + = = = +  

 

= +  = = =

where, lP  is the dimensionless medium  

permeability, 1p  is the thermal Prandtl number, ( )1,2,...,q n

 = are the n Schmidt 
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numbers, T is the adverse temperature gradient, ( )1, 2,...,
C

n  =  are the n solute 

concentration gradients, ( )2 2 2
x yk k k= +  is a wave number and n  is the frequency of 

the harmonic disturbance and .
d

D
dz

 
=  
 

 

 
The boundary conditions (for the case of two free boundaries are defined as: 

 

( )2
 1,2,.  0 a0 nd d..,W D W DZ n at z


= = =  =  = ==

          
(20) 

 

Eliminating ( ) ( ) ( ),z and


  z Z z from equations (16)–(19), a dispersion relation in W  

is obtained as: 
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           (21) 

 

where,
4

T T
T

T

g d
R

 


=  (thermal Rayleigh number), 

4

C C

C
C

g d
R

 





 


=   (solute 

Rayleigh numbers), 
2 4

2

4
A

d
T




=                        (Taylor number). 

 

4 The Stationary Convection 
 

For stationary state ( )0 = , Eq. (21) yields an expression of the form:               
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                                      (22) 

 



 
 
 

Mathematics and Computer Science: Contemporary Developments Vol. 9 

The Onset of Multi-Diffusive Convection Analyzed for Suspended Particles in a Rotating Dusty Porous Layer: A 

Brinkman Model 

 
 

 
110 

 

Since all the even derivatives of W vanishes, so considering an appropriate solution for 

W of the form: 

 

( )0 0sin , 0, 1,2,3....W W l z W l=  =
 

 

Equation (22) yields: 
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(23) 

 

where, the following notations are assumed as:  
 

1 1

2
† †

4 4 4 2 2 2 2

4 4 2 2

, , , ,

, .

CT
T lC

A A
A A

RR a P
R R x P

l l l

T D
T D

l l





   

 

= = = =

= =

Minimizing Eq. (23) with respect 

to
†

. . 0TR
x i e

x

 
= 

  

yields a fifth degree equation in x  as: 
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(24) 

 

where, 
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The critical dimensionless wave number cx for varying values of parameters can be 

obtained from Eq. (24) and then the critical thermal and solute Rayleigh numbers can be 

deduced from Eq. (23) [6]. 
 

Equation (23) represents a relationship between thermal and solute Rayleigh numbers in 

terms of various embedded parameters. The effect of these parameters (suspended 

particles, medium permeability, medium porosity, Taylor number, Darcy-Brinkman) on 

thermal Rayleigh number can be examined analytically from the following derivatives 

1 1

† † † † † †
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5 Conclusion 
 

(a) A linear stability analysis followed by the normal mode method is taken into 

account to discuss the effect of uniform vertical rotation and suspended particles on 

the onset of multi-diffusive convection through a Darcy-Brinkman porous medium. 

It is concluded that for the stationary convection,  

 

i. The suspended particles, medium porosity and medium permeability are found to 

hasten the onset of thermal instability when the gravity field increases upward 

from its value g0 i.e. ( )( )0f z  . 

ii. The effects of the magnetic field and couple-stress parameter are to stabilize the 

system, as such their effect is to postpone the onset of thermal instability when the 

gravity field increases upward from its value g0 i.e. ( )( )0f z  . 

 

(b) For the validity of PES, the necessary condition for the onset of instability is that the 

inequality given in Eq. (50) must be satisfied.  

 

(c) In the absence of a couple-stress parameter (i.e. 0 = ), the necessary condition for 

the onset of instability is that the inequality 
2

4

l

R
P


  is satisfied and thus the 

sufficient condition for the non-existence of stability is that
2

4

l

R
P


 .  
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