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Abstract 

A fitted tension spline approximation method is proposed for solving a coupled 

system of singularly perturbed delay differential equations. The proposed 

method employs a cubic spline in tension on a uniform grid to construct the 

difference scheme. The method has been shown to consistently converge, 

regardless of the perturbation parameter, as confirmed by numerical testing. 

Keywords: Convection-diffusion, delay term, singular perturbation. 

1. Introduction 

Singularly perturbed delay differential equations (SPDDEs) are a class of 

differential equations that incorporate both small perturbation parameters and 

time delays. These equations are widely used in mathematical modelling across 

various fields, such as: Human pupil-light reflex [1],HIV infection [2]-

[3],Biological oscillators [4], Control theory [5], Neuronal activation 

[6],Physiological processes [7]-[8], Bistable devices in electronics [9], 

Population dynamics [10].These differential equations arise when the future 

behavior of the system is influenced not only by its current state but also by its 

past history. 

Over the past twenty years, significant research has been conducted on 

numerical methods for SPDEs. While effective numerical techniques have been 

developed for single SPDDEs, there are only a limited number of results 

available in the literature for systems of such equations. Subburayan and 
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Ramanujam [11]-[12] came up with two approaches: the initial value technique 

and the asymptotic numerical method: to tackle convection-diffusion and 

reaction-diffusion equations. Meanwhile, Selvi and Ramanujam [13] proposed 

an iterative numerical method tailored for a coupled system of singularly 

perturbed equations.  

Here, we derived a fitted tension spline approximation method to solve systems 

of SPDDEs. Traditional methods tend to stumble when ε gets tiny compared to 

the grid width h used in discretization. Our goal isto prove that cubic spline in 

tension can deliver solid, accurate results whether ε is small or large relative to 

h. Tension splines were first introduced by Schweikert [14] to reduce spurious 

oscillations that often occur in cubic spline curve fitting. This concept was later 

explored and developed further by researchers such as Pruess [15], de Boor [16], 

and others. 

In developing ε-uniform methods, one effective approach is the fitted operator 

method. This technique was initially proposed by Allen et al. [17] for modelling 

viscous fluid flow past a cylinder. A comprehensive overview of ε-uniform fitted 

operator methods can be found in the work of Doolan et al. [18]. Further 

contributions were made by Kadalbajoo and Sharma [19], who applied an ε-

uniform fitted operator method to boundary value problems involving singularly 

perturbed delay differential equations. 

The objective of the present study is to construct an ε-uniform numerical scheme 

for solving boundary value problems arising from coupled systems of singularly 

perturbed convection–diffusion delay differential equations. To achieve this, we 

employ a fitted operator method in conjunction with cubic splines in tension to 

effectively handle such complex problems. 

2. Statement of the Problem 

Consider the following coupled system of SPDDEs of convection-diffusion 

type: 

{
  
 

  
 −𝜀 𝑤1

′′(𝑥) + 𝑝1(𝑥)𝑤1
′(𝑥) +∑ 𝑞1𝑘(𝑥)𝑤𝑘(𝑥)

2

𝑘=1
+∑ 𝑟1𝑘(𝑥)𝑤𝑘(𝑥 − 1)

2

𝑘=1
= 𝑓1(𝑥),   𝑥 ∈ Ω

−𝜀 𝑤2
′′(𝑥) + 𝑝2(𝑥)𝑤2

′(𝑥) +∑ 𝑞2𝑘(𝑥)𝑤𝑘(𝑥)
2

𝑘=1
+∑ 𝑟2𝑘(𝑥)𝑤𝑘(𝑥 − 1)

2

𝑘=1
= 𝑓2(𝑥),   𝑥 ∈ Ω

𝑤1(𝑥) = 𝜙1(𝑥), 𝑥𝜖[−1,0],             𝑤1(2) = 𝑙1,

𝑤2(𝑥) = 𝜙2(𝑥), 𝑥𝜖[−1,0],             𝑤2(2) = 𝑙2,
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(1) 

where0 < 𝜀 ≪ 1, 

𝑝𝑖(𝑥) ≥ 𝛼𝑖 ≥ 𝛼 > 0,         𝑖 = 1,2  

𝑞11(𝑥) > 0,          𝑞22(𝑥) > 0,         𝑞12(𝑥) ≤ 0, 𝑞21(𝑥) ≤ 0, 

𝑞𝑖1(𝑥) + 𝑞𝑖2(𝑥) ≥ 𝛽𝑖 ≥ 𝛽 > 0,       𝑖 = 1,2,                                    

𝑟𝑖𝑗(𝑥) ≤ 0,     𝑖 = 1,2,       𝑗 = 1,2,                                                 

                             -−𝛾 ≤ −𝛾𝑖 ≤ 𝑟𝑖1(𝑥) +  𝑟𝑖2(𝑥) < 0, 𝑖 = 1,2,   𝛽 − 𝛾 > 0, 

thefunction𝑝𝑖, 𝑞𝑖𝑘 , 𝑟𝑖𝑘, 𝑓𝑖  ∈ 𝐶
4(Ω), 𝑖 = 1, 2, 𝑘 = 1, 2, Ω = (0, 2), Ω̅ =

[0, 2], Ω− = (0, 1), Ω+ = (1, 2) and 𝜙𝑖 , 𝑖 = 1, 2 are smooth functions on [-1,0]. 

It may be noted that problem (1) exhibits a strong boundary layer at x=2.  

3. Derivation of Method 

Tension spline approximation method is derived on a uniform mesh as follows: 

Letℎ is step size and 𝑥0 = 0, 𝑥2𝑁 = 2, 𝑥𝑖 = 𝑖ℎ, 𝑖 = 1 𝑡𝑜 2𝑁 − 1. 

The functions 𝑆𝑗(𝑥, 𝜏) = 𝑆𝑗(𝑥), 𝑗 = 1, 2 satisfying the following equations: 

𝑆𝑗
′′(𝑥) − 𝜏𝑆𝑗(𝑥) = [𝑆𝑗

′′(𝑥𝑖) −  𝜏𝑆𝑗(𝑥𝑖)]
(𝑥𝑖+1−𝑥)

ℎ
 + [𝑆𝑗

′′(𝑥𝑖+1) −  𝜏𝑆𝑗(𝑥𝑖+1)]
(𝑥−𝑥𝑖)

ℎ
,  

   𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]  

(2) where, 𝑆𝑗(𝑥𝑖) = 𝑊𝑗(𝑥𝑖) ≃  𝑤𝑗(𝑥𝑖), 𝑗 = 1,2 and 𝜏 > 0 is termed as tension 

factor. 

Solving Eq. (2), we get 

𝑆𝑗(𝑥) = 𝐶𝑗𝑒
𝜇𝑥

ℎ + 𝐷𝑗𝑒
−
𝜇𝑥

ℎ + (
𝑀𝑗,𝑖−𝜏𝑊𝑗,𝑖

𝜏
)(
𝑥−𝑥𝑖+1

ℎ
)+(

𝑀𝑗,𝑖+1−𝜏𝑊𝑗,𝑖+1

𝜏
)(
𝑥𝑖−𝑥

ℎ
), 

where𝐶𝑗and 𝐷𝑗are the arbitrary constants, whose values are found with the use of 

interpolatory conditions 𝑆𝑗(𝑥𝑖+1) = 𝑊𝑗,𝑖+1, 𝑆𝑗(𝑥𝑖) = 𝑊𝑗,𝑖 for 𝑗 = 1, 2. 

Take𝜇=h𝜏
1

2and 𝑀𝑗,𝑖 = 𝑆𝑗
′′(𝑥𝑖), we get 
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𝑆𝑗(𝑥) =
ℎ2

𝜇2 sinh 𝜇
[𝑀𝑗,𝑖+1 sinh

𝜇(𝑥 − 𝑥𝑖)

ℎ
+ 𝑀𝑗,𝑖 sinh

𝜇(𝑥𝑖+1 − 𝑥)

ℎ
]

−
ℎ2

𝜇2
[
(𝑥 − 𝑥𝑖)

ℎ
(𝑀𝑗,𝑖+1 −

𝜇2

ℎ2
𝑊𝑗,𝑖+1)

+
(𝑥𝑖+1 − 𝑥)

ℎ
(𝑀𝑗,𝑖 −

𝜇2

ℎ2
𝑊𝑗,𝑖)] 

(3) Differentiating Eq. (3) and taking 𝑥 → 𝑥𝑖 we obtain 

𝑆𝑗
′(𝑥𝑖

+) =
(𝑊𝑗,𝑖+1 −𝑊𝑗,𝑖)

ℎ
−
ℎ

𝜇2
[(1 −

𝜇

sinh 𝜇
)𝑀𝑗,𝑖+1 − (1 − 𝜇 coth 𝜇)𝑀𝑗,𝑖]. 

Considering the interval (𝑥𝑖−1 − 𝑥𝑖)and proceeding similarly, we get 

𝑆𝑗
′(𝑥𝑖

−) =
(𝑊𝑗,𝑖 −𝑊𝑗,𝑖−1)

ℎ
+
ℎ

𝜇2
[−(1 − 𝜇 coth 𝜇)𝑀𝑗,𝑖 + (1 −

𝜇

sinh𝜇
)𝑀𝑗,𝑖−1] 

Equating the left-hand and right-hand derivatives at 𝑥𝑖 , we have 

(𝑊𝑗,𝑖+1 −𝑊𝑗,𝑖)

ℎ
−
ℎ

𝜇2
[(1 −

𝜇

sinh 𝜇
)𝑀𝑗,𝑖+1 − (1 − 𝜇 coth 𝜇)𝑀𝑗,𝑖]

=
(𝑊𝑗,𝑖 −𝑊𝑗,𝑖−1)

ℎ

+
ℎ

𝜇2
[−(1 − 𝜇 coth 𝜇)𝑀𝑗,𝑖 + (1 −

𝜇

sinh 𝜇
)𝑀𝑗,𝑖−1] 

(4) Thus, we get a tridiagonal system 

ℎ2(𝜇1𝑀𝑗,𝑖−1 + 2𝜇2𝑀𝑗,𝑖 + 𝜇1𝑀𝑗,𝑖+1 = 𝑊𝑗,𝑖+1 − 2𝑊𝑗,𝑖 +𝑊𝑗,𝑖−1, 𝑖 = 1 𝑡𝑜 2𝑁 − 1 

(5) Forj = 1,2,  where 𝜇1 =
1

𝜇2
(1 −

𝜇

sinh𝜇
) , 𝜇2=

1

𝜇2
(𝜇 coth 𝜇 − 1), and 𝑀𝑗,𝑖 =

𝑆𝑗
′′(𝑥𝑖), 

𝑖 = 1 𝑡𝑜 2𝑁 − 1. 

The equation (5) is consistent if𝜇1 + 𝜇2 =
1

2
. 

From the boundary conditions 𝑊𝑗,𝑖 = 𝜙𝑗,𝑖, −𝑁 ≤ 𝑖 ≤ 0,𝑊𝑗,2𝑁 = 𝑙𝑗 , where 𝜙𝑗,𝑖 =

𝜙𝑗(𝑥𝑖). 

Take the notation 
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𝑝1(𝑥𝑖) = 𝑝1,𝑖, 𝑝2(𝑥𝑖) = 𝑝2,𝑖, 𝑞1𝑗(𝑥𝑖) = 𝑞1𝑗,𝑖, 𝑞2𝑗(𝑥𝑖) = 𝑞2𝑗,𝑖, 𝑟1𝑗(𝑥𝑖) =

𝑟1𝑗𝑖, 𝑟2𝑗(𝑥𝑖) = 𝑟2𝑗𝑖 and 𝑓𝑗(𝑥𝑖) = 𝑓𝑗,𝑖. 

From Eq. (1), we have 

𝜀𝑀1,𝑘 = 𝑝1,𝑘𝑊1,𝑘
′ + 𝑞11,𝑘𝑊1,𝑘 + 𝑞12,𝑘𝑊2,𝑘 + 𝑟11,𝑘𝑊1(𝑥𝑘 − 1) + 𝑟12,𝑘𝑊2(𝑥𝑘 −

1) − 𝑓1,𝑘, 

𝜀𝑀2,𝑘 = 𝑝2,𝑘𝑊2,𝑘
′ + 𝑞21,𝑘𝑊1,𝑘 + 𝑞22,𝑘𝑊2,𝑘 + 𝑟21,𝑘𝑊1(𝑥𝑘 − 1) + 𝑟22,𝑘𝑊2(𝑥𝑘 −

1) − 𝑓2,𝑘, 

Substituting 𝑀1,𝑘 and 𝑀2,𝑘with 𝑘 = 𝑖, 𝑖 ± 1 and  

𝑊𝑗,𝑖
′ =

𝑊𝑗,𝑖+1 −𝑊𝑗,𝑖−1

2ℎ
,   𝑗 = 1,2, 

𝑊𝑗,𝑖+1
′ =

3𝑊𝑗,𝑖+1 − 4𝑊𝑗,𝑖 +𝑊𝑗,𝑖−1

2ℎ
,   𝑗 = 1,2, 

𝑊𝑗,𝑖−1
′ =

−𝑊𝑗,𝑖+1 + 4𝑊𝑗,𝑖 −𝑊𝑗,𝑖−1

2ℎ
,   𝑗 = 1,2. 

In Eq. (5), we obtain the following system of linear equations in𝑊1,𝑖 and 𝑊2,𝑖 , 

{−𝜀 − 1.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇1ℎ
2𝑞11,𝑖−1 − 𝜇2ℎ𝑝1,𝑖 + 0.5𝜇1ℎ𝑝1,𝑖+1)𝑊1,𝑖−1 + (2𝜀

+ 2𝜇1ℎ𝑝1,𝑖−1 + 2𝜇2ℎ
2𝑞11,𝑖 − 2𝜇1ℎ𝑝1,𝑖+1)𝑊1,𝑖 + (−𝜀

− 0.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇2ℎ𝑝1,𝑖 + 1.5𝜇1ℎ𝑝1,𝑖+1 + 𝜇1ℎ
2𝑞11,𝑖+1)𝑊1,𝑖+1

+ ℎ2(𝜇1𝑞12,𝑖−1𝑊2,𝑖−1 + 2𝜇2𝑞12,𝑖𝑊2,𝑖 + 𝜇1𝑞12,𝑖+1𝑊2,𝑖+1)

= ℎ2[{𝜇1𝑓1,𝑖−1 + 2𝜇2𝑓1,𝑖 + 𝜇1𝑓1,𝑖+1}

− {𝜇1𝑟11,𝑖−1𝑊1(𝑥𝑖−1−𝑁) + 2𝜇2𝑟11,𝑖𝑊1(𝑥𝑖−𝑁)

+ 𝜇1𝑟11,𝑖+1𝑊1(𝑥𝑖+1−𝑁)} − {𝜇1𝑟12,𝑖−1𝑊2(𝑥𝑖−1−𝑁)

+ 2𝜇2𝑟12,𝑖𝑊2(𝑥𝑖−𝑁) + 𝜇1𝑟12,𝑖+1𝑊2(𝑥𝑖+1−𝑁)} 
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{(−𝜀 − 1.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇1ℎ
2𝑞22,𝑖−1 − 𝜇2ℎ𝑝2,𝑖 + 0.5𝜇1ℎ𝑝2,𝑖+1)𝑊2,𝑖−1 + (2𝜀

+ 2𝜇1ℎ𝑝2,𝑖−1 + 2𝜇2ℎ
2𝑞22,𝑖 − 2𝜇1ℎ𝑝2,𝑖+1)𝑊2,𝑖 + (−𝜀

− 0.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇2ℎ𝑝2,𝑖 + 1.5𝜇1ℎ𝑝2,𝑖+1 + 𝜇1ℎ
2𝑞22,𝑖+1)𝑊2,𝑖+1

+ ℎ2(𝜇1𝑞21,𝑖−1𝑊1,𝑖−1 + 2𝜇2𝑞21,𝑖𝑊1,𝑖 + 𝜇1𝑞21,𝑖+1𝑊1,𝑖+1)

=  ℎ2[{𝜇1𝑓2,𝑖−1 + 2𝜇2𝑓2,𝑖 + 𝜇1𝑓2,𝑖+1}

− {𝜇1𝑟22,𝑖−1𝑊2(𝑥𝑖−1−𝑁) + 2𝜇2𝑟22,𝑖𝑊2(𝑥𝑖−𝑁)

+ 𝜇1𝑟22,𝑖+1𝑊2(𝑥𝑖+1−𝑁)} − {𝜇1𝑟21,𝑖−1𝑊1(𝑥𝑖−1−𝑁)

+ 2𝜇2𝑟21,𝑖𝑊1(𝑥𝑖−𝑁) + 𝜇1𝑟21,𝑖+1𝑊1(𝑥𝑖+1−𝑁)}] 

For 𝑖 = 1 𝑡𝑜 2𝑁 − 1 

(6) Incorporating a fitting factor in Eq. (6), we get 

{(−𝜀𝜎1 − 1.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇1ℎ
2𝑞11,𝑖−1 − 𝜇2ℎ𝑝1,𝑖 + 0.5𝜇1ℎ𝑝1,𝑖+1)𝑊1,𝑖−1

+ (2𝜀𝜎1 + 2𝜇1ℎ𝑝1,𝑖−1 + 2𝜇2ℎ
2𝑞11,𝑖 − 2𝜇1ℎ𝑝1,𝑖+1)𝑊1,𝑖

+ (−𝜀𝜎1 − 0.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇2ℎ𝑝1,𝑖 + 1.5𝜇1ℎ𝑝1,𝑖+1

+ 𝜇1ℎ
2𝑞11,𝑖+1)𝑊1,𝑖+1

+ ℎ2(𝜇1𝑞12,𝑖−1𝑊2,𝑖−1 + 2𝜇2𝑞12,𝑖𝑊2,𝑖 + 𝜇1𝑞12,𝑖+1𝑊2,𝑖+1)

= ℎ2[{𝜇1𝑓1,𝑖−1 + 2𝜇2𝑓1,𝑖 + 𝜇1𝑓1,𝑖+1}

− {𝜇1𝑟11,𝑖−1𝑊1(𝑥𝑖−1−𝑁) + 2𝜇2𝑟11,𝑖𝑊1(𝑥𝑖−𝑁)

+ 𝜇1𝑟11,𝑖+1𝑊1(𝑥𝑖+1−𝑁)}

− {𝜇1𝑟12,𝑖−1𝑊2(𝑥𝑖−1−𝑁) + 2𝜇2𝑟12,𝑖𝑊2(𝑥𝑖−𝑁)

+ 𝜇1𝑟12,𝑖+1𝑊2(𝑥𝑖+1−𝑁)}], 

{(−𝜀𝜎2 − 1.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇1ℎ
2𝑞22,𝑖−1 − 𝜇2ℎ𝑝2,𝑖 + 0.5𝜇1ℎ𝑝2,𝑖+1)𝑊2,𝑖−1

+ (2𝜀𝜎2 + 2𝜇1ℎ𝑝2,𝑖−1 + 2𝜇2ℎ
2𝑞22,𝑖 − 2𝜇1ℎ𝑝2,𝑖+1)𝑊2,𝑖 + (−𝜀𝜎2

− 0.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇2ℎ𝑝2,𝑖 + 1.5𝜇1ℎ𝑝2,𝑖+1 + 𝜇1ℎ
2𝑞22,𝑖+1)𝑊2,𝑖+1

+ ℎ2(𝜇1𝑞21,𝑖−1𝑊1,𝑖−1 + 2𝜇2𝑞21,𝑖𝑊1,𝑖 + 𝜇1𝑞21,𝑖+1𝑊1,𝑖+1)

=  ℎ2[{𝜇1𝑓2,𝑖−1 + 2𝜇2𝑓2,𝑖 + 𝜇1𝑓2,𝑖+1}

− {𝜇1𝑟22,𝑖−1𝑊2(𝑥𝑖−1−𝑁) + 2𝜇2𝑟22,𝑖𝑊2(𝑥𝑖−𝑁)

+ 𝜇1𝑟22,𝑖+1𝑊2(𝑥𝑖+1−𝑁)} − {𝜇1𝑟21,𝑖−1𝑊1(𝑥𝑖−1−𝑁)

+ 2𝜇2𝑟21,𝑖𝑊1(𝑥𝑖−𝑁) + 𝜇1𝑟21,𝑖+1𝑊1(𝑥𝑖+1−𝑁)}]  

(7) 
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where  

𝜎𝑗 =
𝑝𝑗(𝑥)

ℎ

𝜀

2
coth(

𝑝𝑗(𝑥)
ℎ

𝜀

2
) , 𝑗 = 1, 2. 

We solved the above system by taking 𝜇1 =
1

12
, 𝜇2 =

5

12
. 

 

4. Numerical Examples 

The maximum absolute pointwise errors using the double mesh principle [18] is 

given by 

𝐸𝑖,𝜀
𝑀 = max

0≤𝑗≤𝑀
|𝑊𝑖,𝑗

𝑀 −𝑊𝑖,2𝑗
2𝑀|, 𝑖 = 1,2. 

The 𝜀 - uniformmaximum absolute error is given by 

𝐸𝑖
𝑀 = max

𝜀
𝐸𝑖,𝜀
𝑀 ,      𝑖 = 1,2. 

The numerical rate of convergence is given by 

𝑅𝑖
𝑀 =

log (𝐸𝑖
𝑀/𝐸𝑖

2𝑀)

log 2
, 𝑖 = 1,2. 

Example 1: 

−𝜀 𝑤1
′′(𝑥) +  11𝑤1

′(𝑥) + 6𝑤1(𝑥) − 2𝑤2(𝑥) − 𝑤1(𝑥 − 1) = 0 

−𝜀 𝑤2
′′(𝑥) +  16𝑤2

′(𝑥) − 2𝑤1(𝑥) + 5𝑤2(𝑥) − 5𝑤2(𝑥 − 1) = 0 

𝑤1(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑤1(2) = 1 

𝑤2(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑤2(2) = 1 

Table 1: 

𝑀

→ 

64 128 256 512 1024 2048 

𝐸1
𝑀 5.7306e-

04 

2.8882e-

04 

1.4499e-04 7.2644e-

05 

3.6358e-05 1.8188e-

05 

𝑅1
𝑀 0.9885 0.9942 0.9971 0.9985 0.9992 - 

𝐸2
𝑀 1.2714e-

04 

6.5319e-

05 

3.3098e-05 1.6659e-

05 

8.3570e-06 4.1854e-

06 

𝑅2
𝑀 0.9609 0.9807 0.9904 0.9952 0.9976 - 
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Example 2: 

−𝜀 𝑤1
′′(𝑥) +  11𝑤1

′(𝑥) + 10𝑤1(𝑥) − 2𝑤2(𝑥) + 𝑥
2𝑤1(𝑥 − 1) − 𝑥𝑤2(𝑥 − 1)

= 𝑒𝑥 

−𝜀 𝑤2
′′(𝑥) +  16𝑤2

′(𝑥) − 2𝑤1(𝑥) + 10𝑤2(𝑥) − 𝑥𝑤1(𝑥 − 1) − 𝑥𝑤2(𝑥 − 1)

= 𝑒𝑥
2
 

𝑤1(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑤1(2) = 1 

𝑤2(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑤2(2) = 1 

Table 2: 

𝑀 → 64 128 256 512 1024 2048 

𝐸1
𝑀 5.2975e-

03 

2.7382e-

03 

1.3925e-

03 

7.0229e-

04 

3.5266e-04 1.7671e-

04 

𝑅1
𝑀 0.9521 0.9755 0.9876 0.9938 0.9969 - 

𝐸2
𝑀 2.0714e-

02 

1.0705e-

02 

5.4430e-

03 

2.7444e-

03 

1.3779e-03 6.9043e-

04 

𝑅2
𝑀 0.9522 0.9759 0.9879 0.9939 0.9969 - 
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5. Conclusion 

We have proposed a uniform mesh difference scheme using fitted tension spline 

approximation method that converges consistently. It’s designed for a coupled 

system of SPDDEs of the convection-diffusion type. We’ve included numerical 

examples to highlight how well the scheme performs. The results show that our 

fitted tension spline approximation method delivers oscillation-free solutions for 

0 < ε < 1 across the entire domain, 0 < x < 2. We tested it on two examples with 

varying ε values. 

Disclaimer (Artificial Intelligence): No AI tool has been used to generate data 

and design any image. All data have been taken from well-reputed published 

journals and the language is manually modified without using any software.  
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