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Abstract

A fitted tension spline approximation method is proposed for solving a coupled
system of singularly perturbed delay differential equations. The proposed
method employs a cubic spline in tension on a uniform grid to construct the
difference scheme. The method has been shown to consistently converge,
regardless of the perturbation parameter, as confirmed by numerical testing.
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1. Introduction

Singularly perturbed delay differential equations (SPDDEs) are a class of
differential equations that incorporate both small perturbation parameters and
time delays. These equations are widely used in mathematical modelling across
various fields, such as: Human pupil-light reflex [1],HIV infection [2]-
[3],Biological oscillators [4], Control theory [5], Neuronal activation
[6],Physiological processes [7]-[8], Bistable devices in electronics [9],
Population dynamics [10].These differential equations arise when the future
behavior of the system is influenced not only by its current state but also by its
past history.

Over the past twenty years, significant research has been conducted on
numerical methods for SPDEs. While effective numerical techniques have been
developed for single SPDDEs, there are only a limited number of results
available in the literature for systems of such equations. Subburayan and
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Ramanujam [11]-[12] came up with two approaches: the initial value technique
and the asymptotic numerical method: to tackle convection-diffusion and
reaction-diffusion equations. Meanwhile, Selvi and Ramanujam [13] proposed
an iterative numerical method tailored for a coupled system of singularly
perturbed equations.

Here, we derived a fitted tension spline approximation method to solve systems
of SPDDEs. Traditional methods tend to stumble when € gets tiny compared to
the grid width h used in discretization. Our goal isto prove that cubic spline in
tension can deliver solid, accurate results whether € is small or large relative to
h. Tension splines were first introduced by Schweikert [14] to reduce spurious
oscillations that often occur in cubic spline curve fitting. This concept was later
explored and developed further by researchers such as Pruess [15], de Boor [16],
and others.

In developing e-uniform methods, one effective approach is the fitted operator
method. This technique was initially proposed by Allen et al. [17] for modelling
viscous fluid flow past a cylinder. A comprehensive overview of e-uniform fitted
operator methods can be found in the work of Doolan et al. [18]. Further
contributions were made by Kadalbajoo and Sharma [19], who applied an ¢-
uniform fitted operator method to boundary value problems involving singularly
perturbed delay differential equations.

The objective of the present study is to construct an g-uniform numerical scheme
for solving boundary value problems arising from coupled systems of singularly
perturbed convection—diffusion delay differential equations. To achieve this, we
employ a fitted operator method in conjunction with cubic splines in tension to
effectively handle such complex problems.

2. Statement of the Problem
Consider the following coupled system of SPDDEs of convection-diffusion
type:
2 2
—ew,"(x) + p1()wy'(x) + Z qui ()w (x) + Z re(Owe(x — 1) = fi(x), x €Q
k=1 k=1

w0+ P COwy )+ ) anm G + ) mwlr—1) = (), x€Q

Wl(x) = ¢1(x)' XE[—l,O], Wl(z) = l1:
Wz(x) = ¢2(x)' XE[—l,O], WZ(Z) = lz;
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(1)
where0 < ¢ K 1,
pi(x) = a; = a>0, i=12
q11(x) >0, q22(x) >0, q12(x) <0, g1 (x) <0,
() + q(x) 2 ;=2 p >0, i=12
() <0, i=12, j=12,
—y < —vi<ry(x)+ r(x)<0,i=12, B—y >0,

tthunCtionpi, dik, riklfi € 64(.0.),1, = 1, 2, k= 1, Z,Q = (0, 2), .ﬁ =
[0,2],Q~ = (0,1),Q% = (1,2) and ¢;,i = 1,2 are smooth functions on [-1,0].
It may be noted that problem (1) exhibits a strong boundary layer at x=2.

3. Derivation of Method
Tension spline approximation method is derived on a uniform mesh as follows:
Leth is step sizeand x, = 0,x,y = 2,x; = ith,i = 1to 2N — 1.

The functions S;(x, 7) = S;(x),j = 1, 2 satisfying the following equations:

5/ () = 78;(x) = [8]' () — 5G] EE2 4+ 5] (i) — 78 (i )] 22

X € [x, Xi41]

(2) where, S;(x;) = W;(x;) = w;j(x;),j = 1,2 and T > 0 is termed as tension
factor.

Solving Eqg. (2), we get

ux _ux M:i—TW i : e Miisi—TW ;5 —
S;(x) = Cjen + Dye ™ + (FE—) (F )¢ (LI (2L

whereC;and D;are the arbitrary constants, whose values are found with the use of
interpolatory conditions S;(x;41) = Wj 41, Sj(x;) = W for j = 1, 2.

1
Takeu=hrzand M;; = S/’ (x;), we get
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h? o ulx —xg) L H(Xy1 — X)
S](X) = m [%;Hﬂ sth + Mj,i sth

h% [(x — x;) u?
e ITl <Mj,i+1 ) Wi i1

G =) (), _#
o (M

(3) Differentiating Eq. (3) and taking x — x; we obtain

(Wiis = W) R, #
—|(1-

! +N\
§j (i) = h sinh u

)Mj,i+1 — (1 — ucoth M)Mj,i]-
Considering the interval (x;_; — x;)and proceeding similarly, we get

I — (ij,i - I/l'/j,i—l) h u
Sj(x;) = A + el [—(1 — pcothp)M;; + (1 - sinh/) Mj,i—l]

Equating the left-hand and right-hand derivatives at x;, we have

(W41 — W) —i[(l 7 )

M;j ;i1 — (1 — pcoth M)Mj,i]

h u? ~ sinhu
— (lel - VI/jvi_l)
h
h 2
+ F [—(1 —u coth H)]lei + (1 - m) Mj,i—l]

(4) Thus, we get a tridiagonal system

h2 (Mg + 2o My + Mg = Wiy —2Wj i+ Wj;_,i=1to 2N -1

. 1 u _1 —
(5) Forj = 1,2, where u; = 7z (1 — Sinh#),uz—ﬁ (ucothu —1),and M;; =
S (xo),
i=1to 2N — 1.

The equation (5) is consistent ifu, + u, = %

From the boundary conditions W;; = ¢;;,—N < i < 0,W, ,y = l;, where ¢;; =
¢ (xp).

Take the notation
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p1(x;) = pl,irpz(xi) = pz,i"hj(xi) = q1j,i» CIZj(xi) = Clz;',i’ﬁj(xi) =
11 T2 (%)) = 1o and f(x;) = fj ;.

From Eqg. (1), we have

EMy )y = pl,kwll,k + 11, cWik + qrzicWo i + 7’11,kW1(xk -1+ T2k Wa (xx —
1) = fik

EMy ) = pz,szl,k + g2 Wik + G2k Wo i + 7'21,kW1(xk -1+ T2k Wa (xx —
D= for

Substituting M, , and M, ,with k = i,i + 1 and

Wi — Wi
M/]tl = J'l+12h 21 1: ] = 1;2:
, BW o1 — AW + Wiy
Wiis1 = = 2h]l I, j=12
, Wi AW =W
Wj,i—l = = zh” = , J=1.2.

In Eq. (5), we obtain the following system of linear equations inW; ; and W, ;,

{_5 — 1.5pumhpy;1 + #1h2‘h1,i—1 — pH2hp1; + 0.501hpy i)Wy i1 + (26
+ 2 hpy oy + 262R%qu1 — 201 hp1 )W + (=€
— 0.5u1hpyi1 + piahpy; + 1.5u1hpy g + pih? Q1100 Wiien
+ R? (U1 Grz,i-1Wa,im1 + 28212, Wai + U1 Q12,141 W2 ie1)
= h? [{.U1f1,i—1 + 2uyf1; + H1f1,i+1}
- {#1T11,i—1W1 (Xi—q-n) + 2uyr1,; Wy (xi-n)
+ U141 W (xi+1—1v)} — {11121 W, (Xi—1-n)
+ 22Uy Wo(Xion) + HaT12,001 W (Xi41-n)}
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{(—e = 1.5u1hpyi 4 + ﬂ1h2q22,i—1 — P2hpa; + 0501 hps i1 1) Wo g + (26
+ 2phpyiq + zllzhzqzz,i — 21 hp i )Wo + (—€
— 0.5u1hpy i1 + pohpo; + 1.5 hpivr + 1h* Q22,0 1) W isa
+ h? (U1 G21,i-1 Whio1 + 28221, Wri + U1d21,i01Wris1)
= h2[{u1foio1 + 202f2i + Hafoie1)
- {#17'22,1'—1W2 (Xi—1-n) + 2UzT55, i W, (xi—n)
+ 122,41 Wo (xi+1—1v)} — {17121, W (xi—1-n)
+ 22Uy, Wi (xi_y) + 172101 Wi (Xi41-n)3]
Fori=1to 2N —1
(6) Incorporating a fitting factor in Eq. (6), we get

{(—e01 — 1.5u1hpy i1 + pu1h?qu1,io1 — U2hpri + 0.5 hpy i)Wy ioq
+ (2501 + 2uhpy i1 + 2p2h% Q0 — 2H1hp1,i+1)W1,i
+ (_301 — 0.5 hpy -1 + pohpy; + 1.5phpy i1
+ t1h?q11,i41) W i1
+ h? (.U1CI12,i—1W2,i—1 + 2p2q12,Wa i + H1Q12,i+1W2,i+1)
= h? [{.U1f1,i—1 + 2uafr + .U1f1,i+1}
- {#1T11,i—1W1 (Xi—q-n) + 2uyr1,; Wy (xi—n)
+ Uiry1,i41 W (xi+1—N)}
- {ll17"12,i—1W2 (Xi—1-n) + 2upT12;Wo (xi_y)
+ U124 Wo (xi+1—N)}],

{(—e0; — L.5uhpy 4 + ll1h2‘h2,i—1 — Hz2hpa; + 0.501hps i1 1) Wo i
+ (2e0; + 2uihpy 4 + Zﬂzhthz,i — 2p1hps i 1) Wo; + (—€0,
— 0.5u1hpy i1 + pohpo; + 1.5 hpy ier + 1h? Q22,10 1) W it
+ h? (M1q21,i-1Whi-1 + 202G21,: Wi + 1921041 W1 i41)
= hz[{.ulfz,i—l + 2uyfo; + #1f2,i+1}
- {.U17"22,i—1W2 (Xi—q1-n) + 2UzTo0 i W, (xi—n)
+ U124 Wo (xi+1—N)} - {H1T21,i—1W1 (Xi—1-n)
+ 22U, Wi (xi-n) + 1721, Wi (418D

(")
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where

h
Pj(x);
o =

h
Pj(x); ]
5 coth > , j=1,2.

We solved the above system by taking u, = % Uy = %

4. Numerical Examples
The maximum absolute pointwise errors using the double mesh principle [18] is
given by

EM = max |[WM - w321 i=1,2.
l,& Osjle i,j ,2] | ,

The ¢ - uniformmaximum absolute error is given by

EM =maxEM, i=12.
ax L,

The numerical rate of convergence is given by

_ log (E"/EZ™)  _

M Ji=1,2.

‘ log 2
Example 1:
—ewy"(x) + 11w,'(x) + 6wy (x) — 2w, (x) —wy;(x —1) =0
—ew,""(x) + 16w," (x) — 2w, (x) + 5w, (x) —5wy(x —1) =0
wix)=1if -1<x<0,w;(2) =1
wo(x)=1if —1<x<0,w,(2)=1

Table 1:
M | 64 128 256 512 1024 2048
%

EM | 5.7306e- |2.8882e- | 1.4499e-04 | 7.2644e- | 3.6358e-05 | 1.8188e-
04 04 05 05

RM | 0.9885 0.9942 0.9971 0.9985 0.9992 -

EY | 1.2714e- | 6.5319%- | 3.3098e-05 | 1.6659%- | 8.3570e-06 | 4.1854e-
04 05 05 06

R | 0.9609 0.9807 0.9904 0.9952 0.9976 -
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Fig.1: Graph of numerical soluthon for Ex. | with epaifon=2  and M~128

095! \\"
W,

Example 2:
—ew;"(x) + 11w, (%) + 10w, (x) — 2w, (x) + x?wy (x — 1) — xw,(x — 1)

=e*

—ew," " (x) + 16w, (x) — 2w, (x) + 10w, (x) —axw;(x — 1) —xw,(x — 1)

2
= e*

wilx) =1if —1<x<0,w;(2) =1
wo(x)=1if —1<x<0,w,(2)=1

Table 2:
M - | 64 128 256 512 1024 2048
EM | 5.2975e- |2.7382e- | 1.3925e- |7.0229e- | 3.5266e-04 | 1.7671e-
03 03 03 04 04
R¥ |0.9521 0.9755 0.9876 0.9938 0.9969 -
EM |20714e- | 1.0705e- |5.4430e- |2.7444e- | 1.3779e-03 | 6.9043e-
02 02 03 03 04
RY |0.9522 0.9759 0.9879 0.9939 0.9969 -
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Fig. 2: Graph of numerical solution for Ex.2 with epsilon=2 % and M=128
14 — — - ~ - T - - -
11 W, (

W, ‘

W-axis

5. Conclusion

We have proposed a uniform mesh difference scheme using fitted tension spline
approximation method that converges consistently. It’s designed for a coupled
system of SPDDEs of the convection-diffusion type. We’ve included numerical
examples to highlight how well the scheme performs. The results show that our
fitted tension spline approximation method delivers oscillation-free solutions for
0 <& <1 across the entire domain, 0 < x <2. We tested it on two examples with
varying € values.

Disclaimer (Artificial Intelligence): No Al tool has been used to generate data
and design any image. All data have been taken from well-reputed published
journals and the language is manually modified without using any software.

Competing Interests: Authors have declared that no competing interests exist.
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