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Abstract: 

In this work, we develop a spline compression technique for the numerical solution of system of 

singularly perturbed delay differential equations (SPDDEs). The method constructs a piecewise 

cubic spline in compression to approximate the solution, effectively balancing accuracy in 

boundary layers with computational efficiency. Numerical experiments on benchmark problems 

validate the effectiveness of the proposed technique, showing that it yields highly accurate results 

even for very small perturbation parameters and significant delays.  
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Introduction: 

A more realistic model must account for how a system is influenced not only by its present state 

but also by its past and even anticipated future states. Therefore, real-world systems are often 

described using differential equations with delays or advances. Such equations play an important 

role in mathematical modelling across many disciplines, including Human pupil-light reflex [1], 

HIV infection [2, 3], Biological oscillators [4], Control systems [5], Neuronal activity [6], 

Physiological processes [7, 8], Bistable electronic devices [9], Population dynamics [10]. They 

appear in situations where the system’s evolution is determined by present values together with 

different influences from its previous states. 

Over the past twenty years, significant research has been conducted on numerical methods for 

SPDDEs. While effective numerical techniques have been developed for single SPDDEs, there 

are only a limited number of results available in the literature for systems of such equations. 

Subburayan and Ramanujam [11, 12] came up with two approaches: the initial value technique 

and the asymptotic numerical method: to tackle convection-diffusion and reaction-diffusion 

equations. Meanwhile, Selvi and Ramanujam [13] proposed an iterative numerical method 

tailored for a coupled system of SPDDEs.  
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Here, we derived a fitted compression spline approximation scheme to solve systems of SPDDEs. 

Traditional methods tend to stumble when ε (perturbation parameter) gets tiny compared to the 

grid width h used in discretization. Our goal is to prove that cubic spline in compression can 

deliver solid, accurate results whether ε is small or large relative to h. Splines techniques were 

first introduced by Schweikert [14] to reduce spurious oscillations that often occur in cubic spline 

curve fitting. This concept was later explored and developed further by researchers such as Pruess 

[15], de Boor [16], and others.  

In developing ε-uniform methods, one effective approach is the fitted operator method. This 

technique was initially proposed by Allen et al. [17] for modelling viscous fluid flow past a 

cylinder. A comprehensive overview of ε-uniform fitted operator methods can be found in the 

work of Miller and Riordan [18]. Further contributions were made by Kadalbajoo and Sharma 

[19], who applied an ε-uniform fitted operator method to boundary value problems involving 

singularly perturbed delay differential equations. 

The objective of the present study is to construct an ε-uniform numerical scheme for solving 

boundary value problems arising from coupled systems of SPDDEs. To achieve this, we employ 

a fitted operator method in conjunction with cubic splines in compression to effectively handle 

such complex problems.  

Statement of the Problem: 

Consider the following system of SPDDEs of convection-diffusion type: 

{
  
 

  
 −𝜀 𝑣1

′′(𝑥) + 𝑝1(𝑥)𝑣1
′(𝑥) +∑ 𝑞1𝑘(𝑥)𝑣𝑘(𝑥)

2

𝑘=1
+∑ 𝑟1𝑘(𝑥)𝑣𝑘(𝑥 − 1)

2

𝑘=1
= 𝑓1(𝑥), 𝑥 ∈ Ω 

−𝜀 𝑣2
′′(𝑥) + 𝑝2(𝑥)𝑣2

′(𝑥) +∑ 𝑞2𝑘(𝑥)𝑣𝑘(𝑥)
2

𝑘=1
+∑ 𝑟2𝑘(𝑥)𝑣𝑘(𝑥 − 1)

2

𝑘=1
= 𝑓2(𝑥), 𝑥 ∈ Ω 

𝑣1(𝑥) = 𝜙1(𝑥), 𝑥𝜖[−1,0], 𝑣1(2) = 𝑙1,

𝑣2(𝑥) = 𝜙2(𝑥), 𝑥𝜖[−1,0], 𝑣2(2) = 𝑙2,

 

            (1) 

where 0 < 𝜀 ≪ 1, the function 𝑝𝑖,  𝑞𝑖𝑘, 𝑟𝑖𝑘, 𝑓𝑖  ∈ 𝐶
4(Ω), 𝑖 = 1, 2, 𝑘 = 1, 2, Ω = (0, 2), Ω ̅ =

[0, 2],  Ω − = (0, 1), Ω + = (1, 2) and 𝜙𝑖 , 𝑖 = 1, 2 are smooth functions on [-1,0]. It may be noted 

that problem (1) exhibits a strong boundary layer at x=2.  

SPLINE COMPRESSION APPROXIMATION DIFFERENCE SCHEME: 

Spline compression approximation difference scheme is developed on a uniform mesh as follows: 

Let ℎ is step size and 𝑥0 = 0, 𝑥2𝑁 = 2, 𝑥𝑖 = 𝑖ℎ, 𝑖 = 1 𝑡𝑜 2𝑁 − 1. 

The functions 𝑆𝑗(𝑥, 𝜏) = 𝑆𝑗(𝑥), 𝑗 = 1, 2 satisfying the following differential equations: 

𝑆𝑗
′′(𝑥) + 𝜏𝑆𝑗(𝑥) = [𝑆𝑗

′′(𝑥𝑖) +  𝜏𝑆𝑗(𝑥𝑖)] 
(𝑥𝑖+1−𝑥)

ℎ
 + [𝑆𝑗

′′(𝑥𝑖+1) −  𝜏𝑆𝑗(𝑥𝑖+1)] 
(𝑥−𝑥𝑖)

ℎ
,  
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     𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]  (2) 

where, 𝑆𝑗(𝑥𝑖) = 𝑉𝑗(𝑥𝑖) ≃  𝑣𝑗(𝑥𝑖), 𝑗 = 1, 2 and 𝜏 > 0 is termed as compression factor. 

Solving Eq. (2), we get 

𝑆𝑗(𝑥) = 𝐶𝑗 cos
𝜇𝑥

ℎ
+ 𝐷𝑗 sin

𝜇𝑥

ℎ
+ (

𝑀𝑗,𝑖+𝜏𝑉𝑗,𝑖

𝜏
) (

𝑥𝑖+1−𝑥

ℎ
)+ (

𝑀𝑗,𝑖+1+𝜏𝑉𝑗,𝑖+1

𝜏
) (

𝑥−𝑥𝑖

ℎ
), 

where 𝐶𝑗  and 𝐷𝑗  are the arbitrary constants, whose values are found with the use of interpolatory 

conditions 𝑆𝑗(𝑥𝑖+1) = 𝑉𝑗,𝑖+1, 𝑆𝑗(𝑥𝑖) = 𝑉𝑗,𝑖 for 𝑗 = 1, 2. 

Take 𝜇=h 𝜏
1

2 and 𝑀𝑗,𝑖 = 𝑆𝑗
′′(𝑥𝑖), we get 

𝑆𝑗(𝑥) = −
ℎ2

 𝜇2 sin 𝜇
[𝑀𝑗,𝑖+1 sin

𝜇(𝑥 − 𝑥𝑖)

ℎ
+𝑀𝑗,𝑖 sin

𝜇(𝑥𝑖+1 − 𝑥)

ℎ
]

+
ℎ2

 𝜇2
[
(𝑥 − 𝑥𝑖)

ℎ
(𝑀𝑗,𝑖+1 +

𝜇2

ℎ2
𝑉𝑗,𝑖+1) +

(𝑥𝑖+1 − 𝑥)

ℎ
(𝑀𝑗,𝑖 +

𝜇2

ℎ2
𝑉𝑗,𝑖)] 

(3) 

Differentiating Eq. (3) and taking 𝑥 → 𝑥𝑖 we obtain 

𝑆𝑗
′(𝑥𝑖

+) =
(𝑉𝑗,𝑖+1 − 𝑉𝑗,𝑖)

ℎ
+
ℎ

 𝜇2
[(1 −

𝜇

sin 𝜇
)𝑀𝑗,𝑖+1 − (1 − 𝜇 cot 𝜇)𝑀𝑗,𝑖]. 

Considering the interval (𝑥𝑖−1, 𝑥𝑖) and proceeding similarly, we get 

𝑆𝑗
′(𝑥𝑖

−) =
(𝑉𝑗,𝑖 − 𝑉𝑗,𝑖−1)

ℎ
+
ℎ

 𝜇2
[(1 − 𝜇 cot 𝜇)𝑀𝑗,𝑖 − (1 − 

𝜇

sin 𝜇
)𝑀𝑗,𝑖−1] 

Equating the left-hand and right-hand derivatives at 𝑥𝑖 , we have 

(𝑉𝑗,𝑖+1 − 𝑉𝑗,𝑖)

ℎ
+
ℎ

 𝜇2
[(1 −

𝜇

sin 𝜇
)𝑀𝑗,𝑖+1 − (1 − 𝜇 cot 𝜇)𝑀𝑗,𝑖]

=
(𝑉𝑗,𝑖 − 𝑉𝑗,𝑖−1)

ℎ
+
ℎ

 𝜇2
[(1 − 𝜇 cot 𝜇)𝑀𝑗,𝑖 − (1 −

𝜇

sin 𝜇
)𝑀𝑗,𝑖−1] 

(4) 

Thus, we get a tridiagonal system 

ℎ2(𝜇1𝑀𝑗,𝑖−1 + 2𝜇2𝑀𝑗,𝑖 + 𝜇1𝑀𝑗,𝑖+1 = 𝑉𝑗,𝑖+1 − 2𝑉𝑗,𝑖 + 𝑉𝑗,𝑖−1, 𝑖 = 1 𝑡𝑜 2𝑁 − 1 

              (5) 

For j = 1, 2, where 𝜇1 =
1

 𝜇2
(

𝜇

sin𝜇
− 1) , 𝜇2=

1

 𝜇2
(1 − 𝜇 cot 𝜇), and 𝑀𝑗,𝑖 = 𝑆𝑗

′′(𝑥𝑖),  

𝑖 = 1 𝑡𝑜 2𝑁 − 1. 

The equation (5) is consistent if 𝜇1 + 𝜇2 =
1

2
. 

From the boundary conditions 𝑉𝑗,𝑖 = 𝜙𝑗,𝑖, −𝑁 ≤ 𝑖 ≤ 0, 𝑉𝑗,2𝑁 = 𝑙𝑗 , where 𝜙𝑗,𝑖 = 𝜙𝑗(𝑥𝑖). 

Take the notation 
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𝑝1(𝑥𝑖) = 𝑝1,𝑖, 𝑝2(𝑥𝑖) = 𝑝2,𝑖, 𝑞1𝑗(𝑥𝑖) = 𝑞1𝑗,𝑖, 𝑞2𝑗(𝑥𝑖) = 𝑞2𝑗,𝑖, 𝑟1𝑗(𝑥𝑖) = 𝑟1𝑗𝑖, 𝑟2𝑗(𝑥𝑖) = 𝑟2𝑗𝑖 and 

𝑓𝑗(𝑥𝑖) = 𝑓𝑗,𝑖. 

From Eq. (1), we have 

𝜀𝑀1,𝑘 = 𝑝1,𝑘𝑉1,𝑘
′ + 𝑞11,𝑘𝑉1,𝑘 + 𝑞12,𝑘𝑉2,𝑘 + 𝑟11,𝑘𝑉1(𝑥𝑘 − 1) + 𝑟12,𝑘𝑉2(𝑥𝑘 − 1) − 𝑓1,𝑘, 

𝜀𝑀2,𝑘 = 𝑝2,𝑘𝑉2,𝑘
′ + 𝑞21,𝑘𝑉1,𝑘 + 𝑞22,𝑘𝑉2,𝑘 + 𝑟21,𝑘𝑉1(𝑥𝑘 − 1) + 𝑟22,𝑘𝑉2(𝑥𝑘 − 1) − 𝑓2,𝑘, 

Substituting 𝑀1,𝑘 and 𝑀2,𝑘with 𝑘 = 𝑖, 𝑖 ± 1 and  

𝑉𝑗,𝑖
′ =

𝑉𝑗,𝑖+1 − 𝑉𝑗,𝑖−1

2ℎ
, 𝑗 = 1, 2, 

𝑉𝑗,𝑖+1
′ =

3𝑉𝑗,𝑖+1 − 4𝑉𝑗,𝑖 + 𝑉𝑗,𝑖−1

2ℎ
, 𝑗 = 1, 2, 

𝑉𝑗,𝑖−1
′ =

−𝑉𝑗,𝑖+1 + 4𝑉𝑗,𝑖 − 3𝑉𝑗,𝑖−1

2ℎ
, 𝑗 = 1, 2. 

In Eq. (5), we obtain the following system of linear equations in 𝑉1,𝑖 and 𝑉2,𝑖, 

{−𝜀 − 1.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇1ℎ
2𝑞11,𝑖−1 − 𝜇2ℎ𝑝1,𝑖 + 0.5𝜇1ℎ𝑝1,𝑖+1)𝑉1,𝑖−1 + (2𝜀 + 2𝜇1ℎ𝑝1,𝑖−1

+ 2𝜇2ℎ
2𝑞11,𝑖 − 2𝜇1ℎ𝑝1,𝑖+1)𝑉1,𝑖 + (−𝜀 − 0.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇2ℎ𝑝1,𝑖 + 1.5𝜇1ℎ𝑝1,𝑖+1

+ 𝜇1ℎ
2𝑞11,𝑖+1)𝑉1,𝑖+1 + ℎ

2(𝜇1𝑞12,𝑖−1𝑉2,𝑖−1 + 2𝜇2𝑞12,𝑖𝑉2,𝑖 + 𝜇1𝑞12,𝑖+1𝑉2,𝑖+1)

= ℎ2[{𝜇1𝑓1,𝑖−1 + 2𝜇2𝑓1,𝑖 + 𝜇1𝑓1,𝑖+1}

− {𝜇1𝑟11,𝑖−1𝑉1(𝑥𝑖−1−𝑁) + 2𝜇2𝑟11,𝑖𝑉1(𝑥𝑖−𝑁) + 𝜇1𝑟11,𝑖+1𝑉1(𝑥𝑖+1−𝑁)}

− {𝜇1𝑟12,𝑖−1𝑉2(𝑥𝑖−1−𝑁) + 2𝜇2𝑟12,𝑖𝑉2(𝑥𝑖−𝑁) + 𝜇1𝑟12,𝑖+1𝑉2(𝑥𝑖+1−𝑁)} 

{(−𝜀 − 1.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇1ℎ
2𝑞22,𝑖−1 − 𝜇2ℎ𝑝2,𝑖 + 0.5𝜇1ℎ𝑝2,𝑖+1)𝑉2,𝑖−1 + (2𝜀 + 2𝜇1ℎ𝑝2,𝑖−1

+ 2𝜇2ℎ
2𝑞22,𝑖 − 2𝜇1ℎ𝑝2,𝑖+1)𝑉2,𝑖 + (−𝜀 − 0.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇2ℎ𝑝2,𝑖 + 1.5𝜇1ℎ𝑝2,𝑖+1

+ 𝜇1ℎ
2𝑞22,𝑖+1)𝑉2,𝑖+1 + ℎ

2(𝜇1𝑞21,𝑖−1𝑉1,𝑖−1 + 2𝜇2𝑞21,𝑖𝑉1,𝑖 + 𝜇1𝑞21,𝑖+1𝑉1,𝑖+1)

=  ℎ2[{𝜇1𝑓2,𝑖−1 + 2𝜇2𝑓2,𝑖 + 𝜇1𝑓2,𝑖+1}

− {𝜇1𝑟22,𝑖−1𝑉2(𝑥𝑖−1−𝑁) + 2𝜇2𝑟22,𝑖𝑉2(𝑥𝑖−𝑁) + 𝜇1𝑟22,𝑖+1𝑉2(𝑥𝑖+1−𝑁)}

− {𝜇1𝑟21,𝑖−1𝑉1(𝑥𝑖−1−𝑁) + 2𝜇2𝑟21,𝑖𝑉1(𝑥𝑖−𝑁) + 𝜇1𝑟21,𝑖+1𝑉1(𝑥𝑖+1−𝑁)}] 

For 𝑖 = 1 𝑡𝑜 2𝑁 − 1 

(6) 

Incorporating a fitting factor in Eq. (6), we get 
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{(−𝜀𝜎1 − 1.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇1ℎ
2𝑞11,𝑖−1 − 𝜇2ℎ𝑝1,𝑖 + 0.5𝜇1ℎ𝑝1,𝑖+1)𝑉1,𝑖−1

+ (2𝜀𝜎1 + 2𝜇1ℎ𝑝1,𝑖−1 + 2𝜇2ℎ
2𝑞11,𝑖 − 2𝜇1ℎ𝑝1,𝑖+1)𝑉1,𝑖

+ (−𝜀𝜎1 − 0.5𝜇1ℎ𝑝1,𝑖−1 + 𝜇2ℎ𝑝1,𝑖 + 1.5𝜇1ℎ𝑝1,𝑖+1 + 𝜇1ℎ
2𝑞11,𝑖+1)𝑉1,𝑖+1

+ ℎ2(𝜇1𝑞12,𝑖−1𝑉2,𝑖−1 + 2𝜇2𝑞12,𝑖𝑉2,𝑖 + 𝜇1𝑞12,𝑖+1𝑉2,𝑖+1)

= ℎ2[{𝜇1𝑓1,𝑖−1 + 2𝜇2𝑓1,𝑖 + 𝜇1𝑓1,𝑖+1}

− {𝜇1𝑟11,𝑖−1𝑉1(𝑥𝑖−1−𝑁) + 2𝜇2𝑟11,𝑖𝑉1(𝑥𝑖−𝑁) + 𝜇1𝑟11,𝑖+1𝑉1(𝑥𝑖+1−𝑁)}

− {𝜇1𝑟12,𝑖−1𝑉2(𝑥𝑖−1−𝑁) + 2𝜇2𝑟12,𝑖𝑉2(𝑥𝑖−𝑁) + 𝜇1𝑟12,𝑖+1𝑉2(𝑥𝑖+1−𝑁)}], 

{(−𝜀𝜎2 − 1.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇1ℎ
2𝑞22,𝑖−1 − 𝜇2ℎ𝑝2,𝑖 + 0.5𝜇1ℎ𝑝2,𝑖+1)𝑉2,𝑖−1 + (2𝜀𝜎2 + 2𝜇1ℎ𝑝2,𝑖−1

+ 2𝜇2ℎ
2𝑞22,𝑖 − 2𝜇1ℎ𝑝2,𝑖+1)𝑉2,𝑖 + (−𝜀𝜎2 − 0.5𝜇1ℎ𝑝2,𝑖−1 + 𝜇2ℎ𝑝2,𝑖

+ 1.5𝜇1ℎ𝑝2,𝑖+1 + 𝜇1ℎ
2𝑞22,𝑖+1)𝑉2,𝑖+1 + ℎ

2(𝜇1𝑞21,𝑖−1𝑉1,𝑖−1 + 2𝜇2𝑞21,𝑖𝑉1,𝑖

+ 𝜇1𝑞21,𝑖+1𝑉1,𝑖+1)

=  ℎ2[{𝜇1𝑓2,𝑖−1 + 2𝜇2𝑓2,𝑖 + 𝜇1𝑓2,𝑖+1}

− {𝜇1𝑟22,𝑖−1𝑉2(𝑥𝑖−1−𝑁) + 2𝜇2𝑟22,𝑖𝑉2(𝑥𝑖−𝑁) + 𝜇1𝑟22,𝑖+1𝑉2(𝑥𝑖+1−𝑁)}

− {𝜇1𝑟21,𝑖−1𝑉1(𝑥𝑖−1−𝑁) + 2𝜇2𝑟21,𝑖𝑉1(𝑥𝑖−𝑁) + 𝜇1𝑟21,𝑖+1𝑉1(𝑥𝑖+1−𝑁)}]  

(7) 

where  

𝜎𝑗 =
𝑝𝑗(𝑥)

ℎ
𝜀

2
coth(

𝑝𝑗(𝑥)
ℎ
𝜀

2
) , 𝑗 = 1, 2. 

We solved the above system by taking 𝜇1 =
1

18
, 𝜇2 =

4

9
. 

Numerical Examples: 

The maximum absolute pointwise errors using the double mesh principle is given by 

𝐸𝑖,𝜀
𝑀 = max

0≤𝑗≤𝑀
|𝑉𝑖,𝑗

𝑀 − 𝑉𝑖,2𝑗
2𝑀|, 𝑖 = 1, 2. 

The 𝜀 - uniform maximum absolute error is given by 

𝐸𝑖
𝑀 = max

𝜀
𝐸𝑖,𝜀
𝑀 , 𝑖 = 1, 2. 

The numerical rate of convergence is given by 

𝑅𝑖
𝑀 =

log (𝐸𝑖
𝑀/𝐸𝑖

2𝑀)

log 2
, 𝑖 = 1, 2. 

Example 1:  

−𝜀 𝑣1
′′(𝑥) +  11𝑣1

′(𝑥) + 6𝑣1(𝑥) − 2𝑣2(𝑥) − 𝑣1(𝑥 − 1) = 0 

−𝜀 𝑣2
′′(𝑥) +  16𝑣2

′(𝑥) − 2𝑣1(𝑥) + 5𝑣2(𝑥) − 𝑣2(𝑥 − 1) = 0 

𝑣1(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑣1(2) = 1 
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𝑣2(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑣2(2) = 1 

Table 1: 

𝑀 → 64 128 256 512 1024 2048 

𝐸1
𝑀 5.7950e-04 2.9202e-04 1.4657e-04 7.3424e-05 3.6746e-05 1.8382e-05 

𝑅1
𝑀 0.9887 0.9944 0.9972 0.9986 0.9993 - 

𝐸2
𝑀 1.5066e-04 7.7020e-05 3.8934e-05 1.9573e-05 9.8133e-06 4.9133e-06 

𝑅2
𝑀 0.9680 0.9841 0.9921 0.9960 0.9980 - 

 

 

Example 2: 

−𝜀 𝑣1
′′(𝑥) +  11𝑣1

′(𝑥) + 10𝑣1(𝑥) − 2𝑣2(𝑥) + 𝑥
2𝑣1(𝑥 − 1) − 𝑥𝑣2(𝑥 − 1) = 𝑒𝑥 

−𝜀 𝑣2
′′(𝑥) +  16𝑣2

′(𝑥) − 2𝑣1(𝑥) + 10𝑣2(𝑥) − 𝑥𝑣1(𝑥 − 1) − 𝑥𝑣2(𝑥 − 1) = 𝑒𝑥
2
 

𝑣1(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑣1(2) = 1 

𝑣2(𝑥) = 1, 𝑖𝑓 − 1 ≤ 𝑥 ≤ 0, 𝑣2(2) = 1 

Table 2: 

𝑀 → 64 128 256 512 1024 2048 

𝐸1
𝑀 5.3221e-03 2.7533e-03 1.4009e-03 7.0667e-04 3.5491e-04 1.7785e-04 

𝑅1
𝑀 0.9508 0.9748 0.9872 0.9935 0.9967 - 

𝐸2
𝑀 2.0320e-02 1.0560e-02 5.3835e-03 2.7181e-03 1.3657e-03 6.8452e-04 

𝑅2
𝑀 0.9443 0.9719 0.9859 0.9929 0.9964 - 

 



Bhumi Publishing, India 
November 2025 

76 
 

 

Interpretation: 

We have proposed a uniform mesh difference scheme using fitted compression spline 

approximation method that converges consistently. It’s designed for a coupled system of 

SPDDEs of the convection-diffusion type. We’ve included numerical examples to highlight how 

well the scheme performs. The results show that our fitted tension spline approximation method 

delivers oscillation-free solutions for 0 < ε < 1 across the entire domain, 0 < x < 2. We tested it 

on two examples with varying ε values. 
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