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Abstract:

In this work, we develop a spline compression technique for the numerical solution of system of
singularly perturbed delay differential equations (SPDDEs). The method constructs a piecewise
cubic spline in compression to approximate the solution, effectively balancing accuracy in
boundary layers with computational efficiency. Numerical experiments on benchmark problems
validate the effectiveness of the proposed technique, showing that it yields highly accurate results
even for very small perturbation parameters and significant delays.
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Introduction:

A more realistic model must account for how a system is influenced not only by its present state
but also by its past and even anticipated future states. Therefore, real-world systems are often
described using differential equations with delays or advances. Such equations play an important
role in mathematical modelling across many disciplines, including Human pupil-light reflex [1],
HIV infection [2, 3], Biological oscillators [4], Control systems [5], Neuronal activity [6],
Physiological processes [7, 8], Bistable electronic devices [9], Population dynamics [10]. They
appear in situations where the system’s evolution is determined by present values together with
different influences from its previous states.

Over the past twenty years, significant research has been conducted on numerical methods for
SPDDEs. While effective numerical techniques have been developed for single SPDDEs, there
are only a limited number of results available in the literature for systems of such equations.
Subburayan and Ramanujam [11, 12] came up with two approaches: the initial value technique
and the asymptotic numerical method: to tackle convection-diffusion and reaction-diffusion
equations. Meanwhile, Selvi and Ramanujam [13] proposed an iterative numerical method

tailored for a coupled system of SPDDEs.
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Here, we derived a fitted compression spline approximation scheme to solve systems of SPDDEs.
Traditional methods tend to stumble when € (perturbation parameter) gets tiny compared to the
grid width h used in discretization. Our goal is to prove that cubic spline in compression can
deliver solid, accurate results whether € is small or large relative to h. Splines techniques were
first introduced by Schweikert [14] to reduce spurious oscillations that often occur in cubic spline
curve fitting. This concept was later explored and developed further by researchers such as Pruess
[15], de Boor [16], and others.

In developing e-uniform methods, one effective approach is the fitted operator method. This
technique was initially proposed by Allen ef al. [17] for modelling viscous fluid flow past a
cylinder. A comprehensive overview of g-uniform fitted operator methods can be found in the
work of Miller and Riordan [18]. Further contributions were made by Kadalbajoo and Sharma
[19], who applied an g-uniform fitted operator method to boundary value problems involving
singularly perturbed delay differential equations.

The objective of the present study is to construct an g-uniform numerical scheme for solving
boundary value problems arising from coupled systems of SPDDEs. To achieve this, we employ
a fitted operator method in conjunction with cubic splines in compression to effectively handle
such complex problems.

Statement of the Problem:

Consider the following system of SPDDEs of convection-diffusion type:
( 1 ! 2 2
—ev" () + p1 (v, (%) + E ) 1q1k(x)vk(x) + E . rk(ve(x —1) = fi(x),x € Q
= =1

1 —€v" () + pa(X)vy'(x) + Zkzl(bk(x)vk(x) + Zk=1r2k(x)vk(x -1 = f(x),x €Q

Ul(X) = ¢1(X),x€[—1,0],vl(2) = llr
\ Uz(X) = ¢2(X),XE[—1,O],U2(2) = lZ’

&)
where 0<e<«1, the function p;, Gy Tir.f; €C*Q),i=1,2k=1,2,0=1(0,2),0 =
[0,2], 0~ =(0,1),Q " =(1,2) and ¢;,i = 1, 2 are smooth functions on [-1,0]. It may be noted
that problem (1) exhibits a strong boundary layer at x=2.

SPLINE COMPRESSION APPROXIMATION DIFFERENCE SCHEME:
Spline compression approximation difference scheme is developed on a uniform mesh as follows:
Let h is step size and x5 = 0,x,y = 2,x; = ih,i = 1to 2N — 1.

The functions S;(x,7) = S;(x),j = 1, 2 satisfying the following differential equations:

S;'(x) +18;(x) = [S]' (x) + TS;(x)] —(x”;_x) + 8 (xig1) — TS (xi41)] (x;lxi),
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x € [x;,%i41] (2)
where, S;(x;) = Vj(x;) = v;(x;),j = 1,2 and T > 0 is termed as compression factor.

Solving Eq. (2), we get

M]L"'TV]L xl+1 X M; l+1+TV] i+1y X—X{

Si(x) = C; cos +D sm—+(

) ( )+ ( ) (50

where C; and Dj are the arbitrary constants, whose values are found with the use of interpolatory
conditions Sj(x;41) = Vj11,S;(x;) = Vj; forj =1,2.
1
Take u=h 7z and M;; = ;' (x;), we get
h? [ (e —x) MKy — x)l
h

m 1Wj,i+1 sin————+ Mj,i Sin

h? [(x — x;) u? (Xi41 — %) I
2 IT Mijsr + 35 Vi | ¥ = | M + 35V

3)
Differentiating Eq. (3) and taking x — x; we obtain
, (Vier = Vi)  h 1
Si(x) = — 5t e [(1 - m) Mjia —(1—wu COtﬂ)Mj,i]-

Considering the interval (xi_l, x;) and proceeding similarly, we get

V:i 1) h 2
( h = F [(1 —H COt‘u)IWj'i B (1 B sin M) Mj'i_l]

Si(xi) =

Equating the left-hand and right-hand derivatives at x;, we have

(Viier — Vi) R [( u )
——+—||1—=

h u? sin u

(V Vii- 1)

h

Mjiy1— (1 —u COt.u)Mj,i]

h u
F [(1 —ucotp)M;; — (1 - m) Mj,i—l]

4
Thus, we get a tridiagonal system

h? (M1 + 2u My + Mg = Vigg — 2V + Vjiq,i=1to 2N — 1
(5)

Forj = 1,2, where u; = iz( £ _ 1),,112:% (1 — pcotp), and M;; = ;' (xy),

sinu

i=1to?2N —1.
1
>

From the boundary conditions V;; = ¢;;, —N < i < 0,V ,y = l;, where ¢;; = ¢;(x;).

The equation (5) is consistent if py + pu, =

Take the notation
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P1(x;) = P1,i02(X) = P2is Q1 (X)) = Qi Q2j (X)) = Qzji 71 (%) = 14y, 125(x;) =125 and
fiGx) = fii

From Eq. (1), we have

My = D1aVik + qriVik + QizpVor + TioeVaiGe — 1) + 11 Vo (2 — 1) = fi,

EMa i = DoiVor + Q21kVik + QoziVor + T20aVi(e — 1) + 1o i Vo O — 1) — foks
Substituting M, , and M, ,with k =i,i + 1 and

Ve — Vs
ro_ Ui+l Jji-1 .
V== /=12
3Vji00 — 4V + Vi
Vi ===, =12
Va1 + 4V — 3V
Vi = — = 1,2,

In Eq. (5), we obtain the following system of linear equations in V; ; and V5 ;,
{—3 — 1.5p3hpy ;g + p1h*quai-1 — Uahps; + 0.5u1hpy 1 1)Vaioa + Qe + 2pu3hpy ;g
+ 2uh?qu1i — 201 hp1ie )V + (=& — 0.5 hpy g + phpy; + 1.5 hpy g
+ #1hZCI11,i+1)V1,i+1 + h? (M1912,i-1V2,i-1 + 2U2G12,iV2,i + M1G12,i+1V2,041)
= h? [{ﬂlfl,i—1 + 2pp /1 + ﬂ1f1,i+1}
— {#17"11,1'—1'/1 (Xi—1-n) + 2up7y 1, Vi (X—n) + paT11,i41 V2 (xi+1—N)}
—{tari2,i-1Vo(Xim1-n) + 2U712i V2 (X n) + 712141 Vo (X1 -n)}
{(—e = 1.5uhpyi1 + p1h*qazi-1 — Uohp2i + 0.5u1hp2 4 1)Vo i1 + (28 + 2u1hpy iy
+ Zﬂzhz%z,i — 2p1hpyi41)Vo; + (=€ = 0.501hpy i1 + pohpy; + 1.5ushpy i4q
+ ﬂ1h2CI22,i+1)V2,i+1 + h? (M1921,i-1V1,i-1 + 202921, V1, + M1G21,i+1V1041)
= h? [{#1f2,i—1 + 21y /5 + ﬂ1f2,i+1}
- {#1T22,i—1V2 (xi—1-n) + 2UzT52,i Vo (xi—n) + U1T22,i+1V2 (xi+1—N)}
— {tar21,i-1Vai (X1 -n) + 2U721, Vi (- n) + 721,041V (X418
Fori=1to 2N -1

(6)
Incorporating a fitting factor in Eq. (6), we get
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{(—eoy — L5y hpy 1 + ll1hZQ11,i—1 — uzhpy; +0.5u1hpy 1)V i1
+ (2807 + 2 hpy iy + 28202 G110 — 201 hP1 i1 Vi
+ (—e0y — 0.5 hpy i1 + Dy + 1501 hps jq + Uh?qu1,i01) Ve
+ 12 (U Gaz,i-1Vaio1 + 202G12,iV2i + M1 12,141 Va,i41)
= h? [{#1f1,i—1 + 2ﬂ2f1,i + ll1f1,i+1}
— {1,V (timaon) + 202711,Vi (o n) + aT11,01 Vi (Kisa-n) }
— {t1T12,i-1Va(Xim1-n) + 282712, Vo (Ximn) + 712,01 Vo (Kip-n) ],
{(—e0; — 1.5p1hpi—q + p1h?qazi1 — pzhpa; + 0.5 hps i11)Va i + (220, + 241 hpy g
+ ZﬂthCIzz,i — 2p1hpyi41)Vo; + (€02 — 0.501hpy 1 + pahpy
+ 1.5 hpgivs + #1h?Qaz,i01)Vaie1 + P2 (U1G21i-1Vaic1 + 262921, V1
+ U1q21,i+1V1041)
= h? [{.U1f2,i—1 + 21y /5 + .U1f2,i+1}
— {#17”22,i—1V2 (Xi—1-n) + 2Up722,i Vo (Xion) + UiT22i41 V> (xi+1—N)}
—{tar21,i-1Va (X1 -n) + 2U721, Vi (-n) + 721,141V (X1 -8) )]

(7)

where

h h
Pj(x)g Pj(x)g ]
o = 5 coth > ,Jj=1,2.

We solved the above system by taking p; = %, Uy = g.
Numerical Examples:

The maximum absolute pointwise errors using the double mesh principle is given by

EM = max |[VM —v2M1| i=1,2.
LE Osjle L] l,2]|’ ’

The € - uniform maximum absolute error is given by

EM =maxEM,i=1,2.
ax by,

The numerical rate of convergence is given by

_ log (E"/E?"™) . _

RM Ji=1,2.

‘ log 2
Example 1:
—ev"(x) + 11v,"(x) + 6v,(x) — 2v,(x) — v (x—1) =0
—ev,""(x) + 16w, (x) — 2v,(x) + 5v,(x) —v,(x —1) =0
v(x)=1if -1<x<0,1,(2) =1
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v,(x)=1,if —1<x<0,1,(2) =1

Table 1:

M - 64 128 256 512 1024 2048
EM | 5.7950e-04 | 2.9202e-04 | 1.4657¢-04 | 7.3424e-05 | 3.6746¢-05 | 1.8382¢-05
R¥ 0.9887 0.9944 0.9972 0.9986 0.9993 -

EY | 1.5066e-04 | 7.7020e-05 | 3.8934¢-05 | 1.9573e-05 | 9.8133¢-06 | 4.9133¢-06
RY 0.9680 0.9841 0.9921 0.9960 0.9980 -
1 | Fig 1 raph o meric soluion o Ex. 1 it epsilnn=2’|8 ana 129
095 —, |
09 Y -
085 |
E o8k |
075 ]
il |
0.65- i
0 02 o4 06 03 i 12 14 16 1s 2
Example 2:

—ev;"(x) + 11v,"(x) + 10v,(x) — 2v,(x) + x%v;(x — 1) — xv,(x — 1) = e*

—ev,""(x) + 16v,"(x) — 2v,(x) + 10v,(x) — xv;(x — 1) —xv,(x — 1) = ex’
v(x)=1if -1<x<0,1,(2)=1
v(x)=1if —-1<x<0,v,(2)=1

Table 2:

M- | 64 128 256 512 1024 2048
EM 153221e-03 |2.7533¢-03 | 1.4009¢-03 | 7.0667e-04 | 3.5491e-04 1.7785e-04
RM 10.9508 0.9748 0.9872 0.9935 0.9967 -
EM 12.0320e-02 | 1.0560e-02 | 5.3835e-03 |2.7181e-03 | 1.3657¢e-03 6.8452¢-04
RY 10.9443 0.9719 0.9859 0.9929 0.9964 -
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Fig. 2: Graph of numerical solution for Ex.2 with epsilon=2’8 and M=128
1.4 T T T T T T T T T
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Interpretation:

We have proposed a uniform mesh difference scheme using fitted compression spline

approximation method that converges consistently. It’s designed for a coupled system of

SPDDEs of the convection-diffusion type. We’ve included numerical examples to highlight how

well the scheme performs. The results show that our fitted tension spline approximation method

delivers oscillation-free solutions for 0 < & < 1 across the entire domain, 0 < x < 2. We tested it

on two examples with varying € values.
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