

Green Intelligence

Artificial Intelligence and Remote Sensing for Climate Change Mitigation and Ecosystem Conservation

Sushil Kumar
Beena Kumari
Editors

● DeepScience
;

Green Intelligence: Artificial Intelligence and Remote Sensing for Climate Change Mitigation and Ecosystem Conservation

Sushil Kumar

Department of Botany, KPG College Etawah, 206001, India

Beena Kumari

Department of Botany, Hindu College, Moradabad 244001, India

Published, marketed, and distributed by:

Deep Science Publishing, 2025
USA | UK | India | Turkey
Reg. No. MH-33-0523625
www.deepscienceresearch.com
editor@deepscienceresearch.com
WhatsApp: +91 7977171947

ISBN: 978-93-7185-814-4

E-ISBN: 978-93-7185-343-9

<https://doi.org/10.70593/978-93-7185-343-9>

Copyright © Dr. Sushil Kumar, Prof. (Dr.) Beena Kumari, 2025.

Citation: Kumar, S. & Kumari, B. (Eds.). (2025). *Green Intelligence: Artificial Intelligence and Remote Sensing for Climate Change Mitigation and Ecosystem Conservation*. Deep Science Publishing.
<https://doi.org/10.70593/978-93-7185-343-9>

This book is published online under a fully open access program and is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This open access license allows third parties to copy and redistribute the material in any medium or format, provided that proper attribution is given to the author(s) and the published source. The publishers, authors, and editors are not responsible for errors or omissions, or for any consequences arising from the application of the information presented in this book, and make no warranty, express or implied, regarding the content of this publication. Although the publisher, authors, and editors have made every effort to ensure that the content is not misleading or false, they do not represent or warrant that the information-particularly regarding verification by third parties-has been verified. The publisher is neutral with regard to jurisdictional claims in published maps and institutional affiliations. The authors and publishers have made every effort to contact all copyright holders of the material reproduced in this publication and apologize to anyone we may have been unable to reach. If any copyright material has not been acknowledged, please write to us so we can correct it in a future reprint.

Preface

Currently, straddling what many refer to as the human-influenced epoch of "the Anthropocene" we are in a unique place where two paths are advanced. The first is a way toward transitioning to an under-explored territory of ecological decline where biodiversity vanishes, such cataclysmic weather events leave cities uninhabitable and our food system has morphed into untenable distribution chains. On the other is a once-in-a-generation chance at transformation, using artificial intelligence (AI) not to simply lessen ecological damage but to regenerate and re-envision our kinship with earth.

Yet it seemed critical that an immediate response be provided, which is why we offer this book *Green Intelligence: Artificial Intelligence and Remote Sensing for Climate Change Mitigation and Ecosystem Conservation*. It compiles new discoveries, analytic frameworks and models for understanding, thinking about, organising and deploying AI to help accelerate the emergence of planetary intelligence and enable the application of prudential judgement in navigating this next geologic epoch. Sustainable, or what we can Call Green Intelligence as DfMA is not simply the next generation of High-Tech interventions. This is about developing technologies that resonate with natural rhythms, which are vigilant, adaptive, and look ahead instead of backwards.

Organized into thirteen interdisciplinary chapters, the book explores how AI and its subfields have evolved to tackle a growing list of environmental challenges; from The Rise of Green Intelligence where Earth observation data by geospatial technologies together with artificial intelligence algorithms are utilized in unlocking secrets hidden within complex earth and planetary systems, thereby holding potential promise for enhancing sustainability on-the-ground, to applied chapters on real-world applications on remote sensing, biodiversity conservation, smart agriculture, urban sustainability and climate forecasting. We delve into the frontlines of AI-powered cities (*Urban Ecosystems and AI-Driven Cities*), and reflect on the promise and pitfalls of integrating Indigenous knowledge systems (*Indigenous Knowledge Meets Artificial Intelligence*) and citizen science initiatives into AI ecosystems.

At its core, this book also confronts vital questions: Can AI truly align with ecological ethics? What are the risks of algorithmic biases in environmental contexts? How do we ensure AI systems remain accountable, inclusive, and regenerative?

Green Intelligence is written for a diverse readership scientist, environmentalists, data practitioners, educators, policymakers, and students who are

seeking not only answers but also inspiration. It aims to foster an informed dialogue at the intersection of technology, ecology, and society.

The final chapters imagine the road ahead: from designing symbiotic AI technologies that work with, rather than against, nature, to building frameworks for governance and policy in the green tech revolution. The concluding vision *Towards a Regenerative Intelligence* calls for a future in which artificial intelligence serves not as a tool of domination, but as a companion in the co-evolution of sustainable and just ecosystems.

We hope this book is a stepping-stone to inspire deeper exploration, collaboration and ethical innovation for life on earth.

Dr. Sushil Kumar
Prof. (Dr.) Beena Kumari

Table of Contents

Chapter 1: The Rise of Green Intelligence: Smart Solutions for a Sustainable Planet	1
Chapter 2: AI-Powered Digital Eyes: Transforming Remote Sensing into Predictive Environmental Intelligence	15
Chapter 3: AI for Biodiversity Conservation: Harnessing Artificial Intelligence to Monitor, Protect, and Restore Life on Earth	28
Chapter 4: Precision Agriculture Meets AI: The Role of Smart Sensors in Ecosystem Stewardship.....	46
Chapter 5: Artificial Intelligence and the Greening of Cities: Towards Eco-Smart Urban Ecosystems	71
Chapter 6: Shadows of Green Intelligence: Ethical and Ecological Dilemmas of AI	90
Chapter 7: Citizen Science Meets Eco-AI: Empowering Local Communities and Global Networks for a Thriving Planet	104
Chapter 8: Indigenous Knowledge Meets Artificial Intelligence: Bridging Ancient Wisdom and Modern Technology for Ecological Sustainability	122
Chapter 9: Climate Modeling and Forecasting with AI: Revolutionizing Environmental Predictions	140
Chapter 10: Future Frontiers in Symbiotic Technology: Integrating AI, Eco-Innovation, and Planetary Ethics for a Thriving Biosphere.....	161
Chapter 11: Beyond Smart Cities: Leveraging Artificial Intelligence to Build Ecologically Resilient and Sustainable Urban Environments	178

Chapter 12: Policy, Governance, and the Green Tech Revolution in the Context of AI and Environmental Sustainability	196
Chapter 13: Balancing Innovation and Nature: Ethical and Ecological Risks of AI in a Green World	214
Chapter 14: Towards a Regenerative Intelligence: Reimagining AI for Ecological Harmony.....	233

Chapter 14: Towards a Regenerative Intelligence: Reimagining AI for Ecological Harmony

Amanpreet Kaur^{*1}, Shiv Pratap Singh²

¹*Department of Chemistry, School of Sciences, IFTM University, Moradabad, 244102 India*

²*Department of Botany, School of Sciences, IFTM University, Moradabad, 244102 India*

*Email: amanpreet2225@gmail.com

Abstract: The accelerating environmental crises of the Anthropocene demand a paradigm shift in how technology interacts with the natural world. This chapter introduces the concept of Regenerative Intelligence—an evolution of Artificial Intelligence (AI) designed to work in harmony with Earth's living systems. Moving beyond extractive, efficiency-driven models, Regenerative Intelligence draws on ecological principles such as circularity, diversity, and adaptive feedback to promote planetary health. The chapter explores potential applications in climate resilience, biodiversity monitoring, circular economies, and regenerative urban design, while addressing ethical imperatives like intergenerational justice and inclusion of indigenous knowledge. Challenges such as high energy consumption, data bias, and governance gaps are critically examined, alongside pathways for embedding ecological ethics in AI development. By aligning AI's capabilities with the logic of life, Regenerative Intelligence offers a transformative vision: AI not as a tool of exploitation, but as a collaborative partner in restoring and sustaining ecological harmony.

Keywords: Regenerative Intelligence, ecological harmony, climate resilience, biodiversity monitoring, sustainable AI.

1 Introduction

The Anthropocene a term denoting the current geological epoch dominated by human influence has ushered in an era of profound ecological transformation. Climate instability, large-scale biodiversity loss, soil degradation, freshwater scarcity, and widening socio-environmental inequities now define the planetary condition (Steffen et al., 2015). Scientific evidence underscores that the Earth system is approaching critical tipping points, beyond which ecological recovery could become increasingly uncertain (Lenton et al., 2019). These unprecedented challenges demand a radical departure from extractive models of economic and technological growth toward regenerative paradigms that prioritize long-term planetary health.

Within this transition, Artificial Intelligence (AI) emerges as both a powerful enabler and a potential risk. On one hand, AI offers tools for high-resolution environmental monitoring, predictive modeling of climate events, and optimization of resource flows in agriculture, energy, and urban systems (Vinuesa et al., 2020). On the other, its current trajectory driven largely by commercial imperatives risks perpetuating high energy consumption, resource extraction for hardware, and socio-economic inequalities (Crawford, 2021). For AI to become a true ecological ally, it must transcend its role as a purely instrumental problem-solving technology.

The concept of Regenerative Intelligence proposes such a transformation. Inspired by the logic of living systems, regenerative AI would embed ecological literacy, adaptive feedback loops, and restorative objectives into its core architectures (Benyus, 1997). This approach envisions AI not as an external controller of nature but as an integrated partner in ecosystem stewardship, capable of supporting climate adaptation, biodiversity restoration, and socio-ecological resilience (Folke et al., 2021).

Key to this reimagining is a shift from anthropocentric to ecocentric perspectives. Incorporating indigenous and traditional ecological knowledge alongside advanced computational models can foster AI systems that operate within the boundaries of Earth's regenerative capacities (Whyte, 2018). Furthermore, aligning AI with circular economy principles where waste is minimized, materials are reused, and resource flows mimic natural cycles can help reduce its ecological footprint while amplifying its regenerative potential (Geissdoerfer et al., 2017).

This chapter positions Regenerative Intelligence as a necessary evolution in the AI discourse, situating it at the intersection of technology, ethics, and ecology. It argues that without embedding ecological harmony, circularity, and resilience into AI's developmental pathways, technological innovation will remain insufficient to address the systemic crises of the Anthropocene.

2 From Exploitative to Regenerative Paradigms

The dominant trajectory of Artificial Intelligence (AI) development reflects the industrial-era mindset—a paradigm centered on maximizing efficiency, scaling consumption, and reinforcing linear economic systems that prioritize throughput over regeneration. These systems often treat natural resources as infinitely available and ecosystems as passive backdrops to human progress (Hickel & Kallis, 2020). Consequently, AI's growing computational demands translate into substantial energy consumption, with large-scale machine learning models producing significant carbon emissions (Patterson et al., 2021). Furthermore, the rapid turnover of hardware infrastructure generates vast quantities of electronic waste, while the extraction of rare-

earth minerals for devices exacerbates ecological degradation and community displacement (Baldé et al., 2017).

Such patterns risk deepening the ecological crises of the Anthropocene, positioning AI as an accelerator of environmental harm rather than an instrument of restoration. Addressing this challenge requires a shift from exploitative to regenerative paradigms frameworks that work in alignment with the self-renewing capacity of Earth's systems (Mang & Reed, 2020).

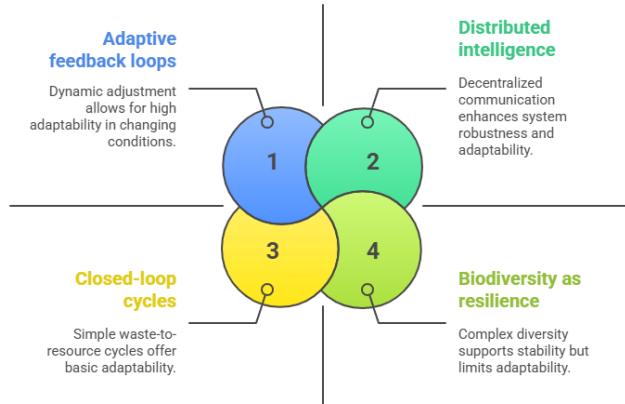


Figure 1: Nature's Design principles in regenerative thinking

Reimagining AI within this ecological framework requires embedding these principles into technological architectures. For instance, closed-loop AI could manage resource flows in a way that eliminates waste across supply chains. Biodiversity-informed AI could ensure that datasets and model architectures maintain diversity to prevent systemic vulnerabilities. Distributed intelligence could enable community-driven, decentralized AI governance models that reduce dependence on centralized, high-energy infrastructures (Vervoort, 2021). Adaptive feedback could allow AI to monitor ecological indicators and automatically shift strategies to maintain planetary boundaries (Rockström et al., 2009).

By aligning AI development with regenerative principles, technology can evolve from an extractive tool to a living ally one that nurtures ecological balance, enhances resilience, and supports the co-evolution of human and natural systems. This transition represents not merely a technological upgrade but a civilizational redesign toward sustainability.

3 Defining Regenerative Intelligence

Regenerative Intelligence represents an emerging paradigm in Artificial Intelligence (AI) development, wherein technological systems are explicitly designed to enhance

ecological health, reinforce resilience, and operate within the safe operating space of planetary boundaries (Rockström et al., 2009). Unlike conventional AI often focused on optimizing narrow objectives for economic or operational efficiency regenerative AI incorporates the wisdom of living systems into its computational logic, ensuring that its outputs contribute positively to the health of both human and non-human communities. At its foundation, Regenerative Intelligence integrates three core dimensions:

- **Ecological literacy** – Embedding knowledge of ecosystem functions, biodiversity dynamics, and biogeochemical cycles into AI's analytical frameworks enables systems to understand the complexity of natural processes (Berkes, 2018). This allows AI to anticipate unintended consequences and design solutions that work with, rather than against, ecological processes.
- **Ethical alignment** – Prioritizing long-term planetary well-being over short-term economic gain ensures that decision-making is guided by intergenerational justice and multi-species ethics (Gardiner, 2011). This involves shifting AI's value systems toward the protection and regeneration of the biosphere.
- **Systems thinking** – Recognizing the interconnectedness of social, economic, and environmental domains allows AI to identify leverage points for systemic transformation (Meadows, 2008). This holistic approach is essential for addressing complex challenges such as climate change, biodiversity loss, and resource scarcity.

Figure 2: Regenerative AI system cycle

A regenerative AI system would therefore possess the capacity to:

- Anticipate ecological consequences by integrating environmental impact forecasting into its decision-making models.
- Promote restorative practices, such as reforestation, wetland restoration, or soil regeneration, by optimizing resources and aligning actions with ecosystem recovery goals.

- Learn from nature's adaptive strategies through biomimetic approaches, where problem-solving draws inspiration from evolutionary solutions (Benyus, 2020).
- Collaborate across human and non-human actors, functioning as a facilitator of dialogue between governments, communities, scientists, and ecological indicators such as biodiversity health or water quality metrics (Latour, 2017).

Ultimately, Regenerative Intelligence reframes AI from a mechanistic tool of human utility to a collaborative partner in planetary stewardship. This transformation requires not only advances in machine learning and ecological data integration but also a profound cultural shift in the values and intentions guiding AI development. By merging ecological literacy, ethical foresight, and systems thinking, Regenerative Intelligence offers a pathway toward a technologically enhanced yet ecologically grounded future.

4 Applications in Ecological Harmony

Regenerative Intelligence's transformative potential lies in its ability to operationalize ecological principles across diverse domains, aligning technological advancement with planetary health. By integrating AI's computational capacity with nature-informed design, applications can move beyond damage control toward active ecosystem regeneration.

4.1 Climate Adaptation and Mitigation: AI systems can combine satellite imagery, high-resolution climate models, and community-based observations to enhance climate resilience (Rolnick et al., 2022). Predictive analytics can forecast extreme weather events, allowing for targeted disaster preparedness and early warning systems (Chen et al., 2020). In renewable energy, AI can optimize grid stability by balancing variable inputs from solar and wind resources, reducing reliance on fossil fuels (Kazmi et al., 2021). Furthermore, AI-guided climate-resilient agriculture leveraging precision irrigation, soil health monitoring, and crop rotation optimization can boost yields while reducing environmental impact (Holland et al., 2020).

4.2 Biodiversity Monitoring: Advances in bioacoustic monitoring, image recognition, and environmental DNA (eDNA) analysis enable AI to track wildlife populations and detect ecosystem changes in near real-time (Wäldchen & Mäder, 2018). Such systems can identify endangered species, provide early alerts on invasive species incursions, and map ecological corridors to maintain habitat connectivity (Kühl et al., 2020). By automating large-scale biodiversity assessments, AI reduces human labor while expanding the temporal and spatial reach of conservation efforts.

4.3 Circular Economy Optimization: AI can facilitate a shift from linear to circular resource flows by enabling intelligent material tracking and predictive maintenance (Bressanelli et al., 2018). Resource recovery systems, supported by AI logistics optimization, ensure that products and materials are reused, refurbished, or recycled efficiently. Feedback loops between AI-driven product life cycle assessments and design teams can reduce waste streams and inspire eco-innovation in manufacturing (Ellen MacArthur Foundation, 2019).

4.4 Regenerative Urban Planning: Urban ecosystems face compounded pressures from population growth, climate change, and habitat fragmentation. AI-enhanced regenerative urban planning can integrate multi-layered data—such as land use, microclimate patterns, and biodiversity inventories to design eco-smart cities (Salat & Bourdic, 2012). Applications include planning nature-based infrastructure, mitigating heat islands through strategically placed green corridors, and enhancing urban biodiversity by embedding habitats into built environments.

Collectively, these applications illustrate how Regenerative Intelligence can serve as a collaborative agent of ecological restoration. By embedding ecological awareness into every stage of decision-making, AI can help steer humanity toward a symbiotic relationship with the biosphere.

5 Ethical and Philosophical Dimensions

For AI to become truly regenerative, it must transcend anthropocentric priorities and embed ecological ethics at its core. Decentralized governance models where decision-making authority is distributed across local and indigenous communities can ensure that AI applications align with place-based ecological stewardship (Vinuesa et al., 2020). Such frameworks enhance resilience by allowing diverse knowledge systems to guide AI's adaptation to environmental contexts.

Intergenerational ethics is equally essential, demanding that AI consider long-term ecological consequences rather than prioritizing short-term efficiency gains (Raworth, 2017). This forward-looking approach supports the preservation of planetary health for future generations. Incorporating indigenous and traditional ecological knowledge into AI training datasets can deepen AI's understanding of complex socio-ecological relationships (Whyte, 2013). This integration not only corrects epistemic biases in current datasets but also honors centuries of place-based sustainability practices. By embracing these principles, AI can shift from being a human-centric convenience to acting as a mediator of multi-species interests, facilitating decisions that foster coexistence and regeneration across the biosphere.

6 Challenges and Risks

While Regenerative Intelligence offers a transformative vision for AI, its implementation faces significant practical and ethical barriers. One major concern is the high energy consumption associated with training large-scale AI models. Studies estimate that training a single advanced language model can emit as much CO₂ as the lifetime emissions of several cars (Strubell et al., 2019). Without renewable energy integration, such computational demands risk exacerbating the climate crisis rather than mitigating it.

Another challenge is greenwashing the strategic marketing of AI systems as “eco-friendly” without delivering substantive environmental benefits (Delmas & Burbano, 2011). This can divert resources from genuinely regenerative projects toward superficial technological fixes. Data bias also presents a critical obstacle. AI models often underrepresent or misinterpret ecosystems in the Global South, small-island nations, or remote biomes due to limited high-quality data (Gebru et al., 2021). These bias risks producing skewed conservation priorities and neglecting vulnerable habitats. Finally, governance gaps remain a pressing issue. There is no universally accepted regulatory framework to oversee ecological AI applications, leading to fragmented standards and potential misuse (Floridi et al., 2018). These governance voids hinder transparency, accountability, and equitable access to regenerative AI tools.

Overcoming these risks requires integrating renewable energy into AI infrastructure, developing rigorous environmental impact assessments, addressing epistemic inequalities in training datasets, and creating enforceable governance mechanisms at local, national, and global scales. Without such measures, the promise of Regenerative Intelligence could be undermined by the very systems it seeks to transform.

7 Pathways to Implementation

Realizing the vision of Regenerative Intelligence requires intentional design choices, cross-sector collaboration, and measurable ecological accountability. First, embedding ecological Key Performance Indicators (KPIs) into AI development frameworks can ensure that environmental impact is assessed alongside performance metrics. Such KPIs might include biodiversity enhancement, carbon reduction, and ecosystem restoration benchmarks (Vinuesa et al., 2020).

Transitioning to Green AI infrastructure data centers powered by renewable energy and optimized for energy efficiency is essential to reducing the carbon footprint of AI operations (Patterson et al., 2021). Integrating living system models into AI architectures allows for more adaptive, resilient, and regenerative decision-making processes, drawing inspiration from ecological feedback loops and network dynamics

(Capra & Luisi, 2014). Collaborative co-design with ecologists, indigenous communities, and policy-makers ensures that AI tools are contextually relevant, culturally respectful, and ecologically grounded (Whyte, 2013). This participatory approach also helps bridge gaps between computational models and lived environmental realities.

Finally, open ecological datasets curated and maintained as a global public good can democratize access to high-quality environmental information, supporting transparency, innovation, and equity in ecological AI applications (Reichman et al., 2011). Through these pathways, Regenerative Intelligence can evolve from a conceptual ideal to a practical, systemic force for planetary renewal.

8 Vision for the Future

In a regenerative future, Artificial Intelligence could function as a planetary nervous system, continuously sensing and interpreting ecological signals such as shifts in biodiversity, soil health, or ocean chemistry in near real-time. Using systems thinking, such an AI would synthesize this data into coordinated, multi-scale responses aimed at restoring ecological balance (Meadows, 2008).

This vision imagines AI as a co-evolutionary partner with Earth's living systems collaborating with forests by monitoring canopy health, working with oceans to regulate fisheries and pollution, and aiding pollinator networks through habitat optimization. These systems would not merely extract data from nature but reciprocate by fostering conditions for ecosystems to thrive (Berkes et al., 2000). Far from utopian speculation, this integration is becoming technically feasible through advances in bio-sensing technologies, distributed sensor networks, and adaptive learning algorithms (Pimm et al., 2015). The challenge lies not in capability but in will ensuring AI development is guided by ecological ethics, long-term thinking, and an unwavering commitment to planetary stewardship. In the Anthropocene, evolving AI toward ecological harmony may prove to be both our most pressing design challenge and our greatest opportunity for securing a resilient future.

9 Conclusion

The emergence of Regenerative Intelligence offers a transformative pathway for aligning Artificial Intelligence with the principles of ecological harmony. By embedding systems thinking, ethical alignment, and ecological literacy into AI, we can shift from extractive technological paradigms toward restorative ones. Realizing this vision requires collaborative governance, integration of traditional knowledge, and a commitment to

long-term planetary health. In the face of climate disruption, biodiversity loss, and resource depletion, regenerative AI is not merely an innovation—it is a necessity. Harnessed wisely, it can become a living partner in Earth stewardship, enabling technology to help heal the very systems that sustain life.

References

Baldé, C. P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The global e-waste monitors 2017: Quantities, flows and resources. United Nations University.

Benkus, J. M. (2020). Biomimicry: Innovation inspired by nature (2nd ed.). Harper Perennial.

Benyus, J. M. (1997). Biomimicry: Innovation inspired by nature. William Morrow.

Berkes, F. (2018). Sacred ecology (4th ed.). Routledge. <https://doi.org/10.4324/9781315683456>

Berkes, F., Colding, J., & Folke, C. (2000). Rediscovery of traditional ecological knowledge as adaptive management. *Ecological Applications*, 10(5), 1251–1262. [https://doi.org/10.1890/1051-0761\(2000\)010\[1251:ROTEKA\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2)

Bressanelli, G., Perona, M., & Saccani, N. (2018). Challenges in supply chain redesign for the Circular Economy: A literature review and a multiple case study. *International Journal of Production Research*, 57(23), 7395–7422. <https://doi.org/10.1080/00207543.2018.1542176>

Capra, F., & Luisi, P. L. (2014). The systems view of life: A unifying vision. Cambridge University Press.

Chen, Y., Hobbs, B. F., & Ellis, H. (2020). Using artificial intelligence to improve extreme weather prediction. *Journal of Applied Meteorology and Climatology*, 59(8), 1333–1351. <https://doi.org/10.1175/JAMC-D-19-0295.1>

Crawford, K. (2021). Atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.

Delmas, M. A., & Burbano, V. C. (2011). The drivers of greenwashing. *California Management Review*, 54(1), 64–87. <https://doi.org/10.1525/cmr.2011.54.1.64>

Ellen MacArthur Foundation. (2019). Artificial intelligence and the circular economy. <https://ellenmacarthurfoundation.org>

Floridi, L., Cowls, J., Beltrametti, M., et al. (2018). AI4People—An ethical framework for a good AI society. *Minds and Machines*, 28(4), 689–707. <https://doi.org/10.1007/s11023-018-9482-5>

Folke, C., et al. (2021). Our future in the Anthropocene biosphere. *Ambio*, 50(4), 834–869. <https://doi.org/10.1007/s13280-021-01544-8>

Gardiner, S. M. (2011). A perfect moral storm: The ethical tragedy of climate change. Oxford University Press.

Gebru, T., Morgenstern, J., Vecchione, B., et al. (2021). Datasheets for datasets. *Communications of the ACM*, 64(12), 86–92. <https://doi.org/10.1145/3458723>

Geissdoerfer, M., et al. (2017). The circular economy – A new sustainability paradigm? *Journal of Cleaner Production*, 143, 757–768. <https://doi.org/10.1016/j.jclepro.2016.12.048>

Hickel, J., & Kallis, G. (2020). Is green growth possible? *New Political Economy*, 25(4), 469–486. <https://doi.org/10.1080/13563467.2019.1598964>

Holland, M. B., Shamer, S. Z., & Myers, R. (2020). Artificial intelligence applications for climate-smart agriculture. *Agricultural Systems*, 183, 102874. <https://doi.org/10.1016/j.agsy.2020.102874>

Kazmi, S. H. A., Gungor, V. C., & Arslan, H. (2021). Artificial intelligence techniques for renewable energy systems: A review. *Renewable and Sustainable Energy Reviews*, 144, 110898. <https://doi.org/10.1016/j.rser.2021.110898>

Kühl, H. S., Bowler, D. E., Bösch, L., et al. (2020). Effective biodiversity monitoring needs a scaling-up of camera traps. *Nature Ecology & Evolution*, 4, 295–296. <https://doi.org/10.1038/s41559-020-1124-7>

Latour, B. (2017). *Facing Gaia: Eight lectures on the new climatic regime*. Polity Press.

Lenton, T. M., et al. (2019). Climate tipping points—Too risky to bet against. *Nature*, 575(7784), 592–595. <https://doi.org/10.1038/d41586-019-03595-0>

Mang, P., & Reed, B. (2020). *Regenerative development and design: A framework for evolving sustainability*. Wiley.

Meadows, D. H. (2008). *Thinking in systems: A primer*. Chelsea Green Publishing.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L. M., Rothchild, D., So, D., Texier, M., & Dean, J. (2021). Carbon emissions and large neural network training. arXiv. <https://doi.org/10.48550/arXiv.2104.10350>

Pimm, S. L., Alibhai, S., Bergl, R., et al. (2015). Emerging technologies to conserve biodiversity. *Trends in Ecology & Evolution*, 30(11), 685–696. <https://doi.org/10.1016/j.tree.2015.08.008>

Raworth, K. (2017). *Doughnut economics: Seven ways to think like a 21st-century economist*. Chelsea Green Publishing.

Reichman, O. J., Jones, M. B., & Schildhauer, M. P. (2011). Challenges and opportunities of open data in ecology. *Science*, 331(6018), 703–705. <https://doi.org/10.1126/science.1197962>

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., ... & Foley, J. (2009). A safe operating space for humanity. *Nature*, 461(7263), 472–475. <https://doi.org/10.1038/461472a>

Rolnick, D., Donti, P. L., Kaack, L. H., et al. (2022). Tackling climate change with machine learning. *ACM Computing Surveys*, 55(2), 1–96. <https://doi.org/10.1145/3485128>

Salat, S., & Bourdic, L. (2012). Urban complexity, efficiency, and resilience. *Urban Morphology*, 16(1), 1–21.

Steffen, W., et al. (2015). Planetary boundaries: Guiding human development on a changing planet. *Science*, 347(6223), 1259855. <https://doi.org/10.1126/science.1259855>

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 3645–3650. <https://doi.org/10.18653/v1/P19-1355>

Vervoort, J. M. (2021). New frontiers in futures games: Leveraging game sector developments. *Futures*, 129, 102748. <https://doi.org/10.1016/j.futures.2021.102748>

Vinuesa, R., et al. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. *Nature Communications*, 11(1), 233. <https://doi.org/10.1038/s41467-019-14108-y>

Wäldchen, J., & Mäder, P. (2018). Plant species identification using computer vision techniques: A systematic literature review. *Archives of Computational Methods in Engineering*, 25, 507–543. <https://doi.org/10.1007/s11831-016-9206-z>

Whyte, K. P. (2013). On the role of traditional ecological knowledge as a collaborative concept. *Ecological Processes*, 2(1), 7. <https://doi.org/10.1186/2192-1709-2-7>

Whyte, K. P. (2018). Indigenous science (fiction) for the Anthropocene: Ancestral dystopias and fantasies of climate change crises. *Environment and Planning E: Nature and Space*, 1(1–2), 224–242. <https://doi.org/10.1177/2514848618777621>