

Advances in Essential Oils and Natural Products

Volume - 5

Chief Editor

Dr. Rakesh Kumar Joshi

Ph.D., Essential Oils Chemistry, Kumaun University Nainital, Uttarakhand,
India

And

Himalayan Aromatic and Medicinal Plants Research Laboratory,
Patwadangar Nainital, Uttarakhand, India

AkiNik Publications ®
New Delhi

Published By: AkiNik Publications

AkiNik Publications
169, C-11, Sector - 3,
Rohini, Delhi-110085, India
Toll Free (India) – 18001234070
Phone No.: 9711224068, 9911215212
Website: www.akinik.com
Email: akinikbooks@gmail.com

Chief Editor: Dr. Rakesh Kumar Joshi

The author/publisher has attempted to trace and acknowledge the materials reproduced in this publication and apologizes if permission and acknowledgments to publish in this form have not been given. If any material has not been acknowledged please write and let us know so that we may rectify it.

The responsibility for facts stated, opinion expressed or conclusions reached and plagiarism, if any, in this book is entirely that of the author. So, the views and research findings provided in this publication are those of the author/s only. The Editor & Publishers are in no way responsible for its content.

© AkiNik Publications™

Publication Year: 2025

Pages: 213

Paperback ISBN: 978-93-7150-897-1

E-Book ISBN: 978-93-7150-083-8

DOI: <https://doi.org/10.22271/ed.book.3378>

Price: ` 823/-

Registration Details

- Printing Press License No.: F.1 (A-4) press 2016
- Trade Mark Registered Under
 - Class 16 (Regd. No.: 5070429)
 - Class 35 (Regd. No.: 5070426)
 - Class 41 (Regd. No.: 5070427)
 - Class 42 (Regd. No.: 5070428)

Preface

Essential oils are natural products derived from aromatic plants, traditionally used worldwide for disinfection, as anti-inflammatory, relaxing and stimulating substances and with potential and modern exploitation in clinical medicine. Essential oils are commonly used in the food and cosmetic industries. They can be used as natural alternatives to synthetic preparations to prevent and treat infectious diseases. They are used traditionally to treat other conditions like the respiratory tract, digestive system, gynecological, endocrine, cardiovascular, nervous system, and skin infections. Many of them also have shown anticancer activities. The essential or volatile oils are extracted from the flowers, barks, stem, leaves, roots, fruits and other parts of the plant by various methods. The essential oils are found to be more beneficial when other aspects of life and diet are given due consideration. The applications of essential oils are diverse. Widely used in cosmetics and perfumes, they also have medicinal applications due to their therapeutic properties and agro-alimentary uses because of their antimicrobial and antioxidant effects. India is one of the few countries in the world having varied agro climatic zones suitable for the cultivation of most essential oil bearing plants. Due to increased awareness of health hazards associated with synthetic chemicals coupled with the increased cost of petroleum products, the use of essential oils has been gradually increasing. The Essential oils were an luxury in the last few decades but now they have become the day-to-day usage commodities in the life of the common people also.

I hope this volume will be welcomed by all those engaged in the study of essential oils and natural products.

Dr. Rakesh Kumar Joshi
(Ph.D., Aromatic and Medicinal Plants Chemistry)
Chief-editor

Contents

Chapters	Page No.
1. Therapeutic Potential and Applications of Fenugreek and Garlic Essential Oils <i>(Shilviya Bhat)</i>	01-17
2. Bioactive Natural Products <i>(Rajamma A.J)</i>	19-52
3. Investigating the Potential of Essential Oils in Enhancing Food Safety: A Comprehensive Review <i>(Sanchita Choubey and Jyoti Deshpande)</i>	53-65
4. Biocolour: Extraction, Usage and Benefits <i>(Sailendri Kumari Patra, Sukirti Mohanty and V. Lakshmi Prasanna Kumari)</i>	67-84
5. Antioxidants: Natural vs. Synthetic Compounds, Applications and Future Perspectives <i>(Amanpreet Kaur, Shubhangee Agarwal, Priyanka Rani, Pawan Kumar Shukla, Sarika Arora and Neha Bhatt)</i>	85-105
6. Overview of Essential Oils in Medicinal and Aromatic Plants in Sustainable Agriculture Practices <i>(R. Manivannan, C. Ravindran, G.B. Sudhagar Rao and V.R. Subash)</i>	107-121
7. The Next Frontier in Phytochemical Isolation: Integrating AI, Nanotech and Hybrid Extraction Systems <i>(Suju Skaria C)</i>	123-139
8. Nutritional and Pharmacological Attributes of <i>Coccinia grandis</i> : From Ethnomedicine to Clinical Applications <i>(Sweta Kundu, Mrinmoy Dey, Suvodeep Saha, Agnik Mukherjee, Suparna Ghosh and Avik Acharya Chowdhury)</i>	141-168
9. Aromatherapy <i>(Trinayanee Sharma and Charli Sharma)</i>	169-193
10. Therapeutic Applications of Natural Volatiles in Tridosha Management <i>(Mayuri Dani and Rajkumar Khiyani)</i>	195-213

Chapter - 5

Antioxidants: Natural vs. Synthetic Compounds, Applications and Future Perspectives

Authors

Amanpreet Kaur*

Department of Chemistry, School of Sciences, IFTM
University, Moradabad, Uttar Pradesh, India

Shubhangee Agarwal

Department of Chemistry, School of Sciences, IFTM
University, Moradabad, Uttar Pradesh, India

Priyanka Rani

Department of Chemistry, School of Sciences, IFTM
University, Moradabad, Uttar Pradesh, India

Pawan Kumar Shukla

Department of Chemistry, School of Sciences, IFTM
University, Moradabad, Uttar Pradesh, India

Sarika Arora

Department of Chemistry, School of Sciences, IFTM
University, Moradabad, Uttar Pradesh, India

Neha Bhatt

Department of Chemistry, Pt. L.M.S., Rishikesh Campus, SDS
University, Tehri Garhwal, Uttarakhand, India

Paperback ISBN: 978-93-7150-897-1

E-Book ISBN: 978-93-7150-083-8

Chapter - 5

Antioxidants: Natural vs. Synthetic Compounds, Applications and Future Perspectives

Amanpreet Kaur*, Shubhangee Agarwal, Priyanka Rani, Pawan Kumar Shukla,
Sarika Arora and Neha Bhatt
Email: Amanpreet2225@gmail.com

Abstract

Antioxidants were used to prevent oxidation in foods which lead to rancidity and browning, DNA oxidation and have many positive physiological effects in humans. The concentration and the absorption mechanism of natural antioxidants are important in obtaining the maximum beneficial effect. The sources of antioxidants must be carefully considered to maximize absorption and avoid the toxicity of higher concentration of synthetic groups. An organized effort to educate individuals about foods rich in natural antioxidants and the ability to recognize the major synthetic antioxidants on food labels would be highly beneficial, though more research needs to be done to fully understand their physiological effects. Synthetic antioxidants are widely used in food industries to prevent oxidation of food matrices. They are also used as food supplements for various health benefits such as anti-cardiovascular diseases and anti-aging. However, chronic consumption of synthetic antioxidants has been linked to various diseases including cancer. Concrete evidence showing their health hazards is limited. Further studies on technological, health and hazard aspects of synthetic antioxidants and their natural counterparts are required in order to get better understanding of these groups of compounds

Keywords: Natural antioxidant, oxidative stress, synthetic antioxidant, future prospects

Introduction

The use of oxygen as the final acceptor of the electrons in the oxidation of energy substances of food origin allows aerobic organisms to produce a high amount of metabolic energy [1]. The high aerobic organisms' ability to produce ATP is associated with the continuous production of radicals and

other Reactive Oxygen Species (ROS) that originate as side products of oxidative metabolism. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic [2]. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers [3]. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell [4]. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded [5].

Many studies have been conducted with regard to free radicals, oxidative stress and antioxidant activity of food, giving antioxidants a prominent beneficial role, but, recently many authors have questioned their importance, whilst trying to understand the mechanisms behind oxidative stress [6]. Many scientists defend that regardless of the quantity of ingested antioxidants, the absorption is very limited, and that in some cases prooxidants are beneficial to human health [7]. The detection of antioxidant activity as well as specific antioxidant compounds can be carried out with a large number of different assays, all of them with advantages and disadvantages [8]. The controversy around antioxidant *in vivo* benefits has become intense in the past few decades and the present review tries to shed some light on research on antioxidants (natural and synthetic) and prooxidants, showing the potential benefits and adverse effects of these opposing events, as well as their mechanisms of action and detection methodologies [9, 10]. It also identifies the limitations of antioxidants and provides a perspective on the likely future trends in this field.

Oxidative stress

Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxy and lipid peroxyl radicals, nitric oxide and peroxynitrite [11]. This chapter is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress [12].

Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids ^[13]. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxy guanosine is an index of DNA damage ^[14].

The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation ^[15, 16]. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, and kidney diseases. Various abiotic stresses lead to the overproduction of Reactive Oxygen Species (ROS) in plants and animals which are highly reactive and toxic causing damage to proteins, lipids, carbohydrates and DNA thus leads to oxidative stress ^[17]. This oxidative stress causes damage to tissues and results in large number of diseases. Antioxidants neutralize the effects of ROS and thus help in preventing diseases. Antioxidants can be natural or synthetic. Natural antioxidants can be taken up through diet as they are present in fruits, vegetables and spices ^[18]. There are also certain synthetic antioxidants like BHT and BHA that also inhibit oxidation. However, these synthetic antioxidants have now been reported to be dangerous to humans so the search for non-toxic antioxidants have intensified in the recent years

Reactive Oxygen Species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also ^[19]. This chapter describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms ^[20]. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called “oxidative stress”. Although almost 30 years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress ^[21]. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative

stress (BOS), low intensity oxidative stress (LOS), intermediate Intensity Oxidative Stress (IOS), and High Intensity Oxidative Stress (HOS) [22]. Another classification of potential interest may differentiate three categories such as Mild Oxidative Stress (MOS), Temperate Oxidative Stress (TOS), and finally Severe (Strong) Oxidative Stress (SOS) [23]. Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real *in situ* functions and operation of so-called “antioxidants”, intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis [24].

Natural antioxidants

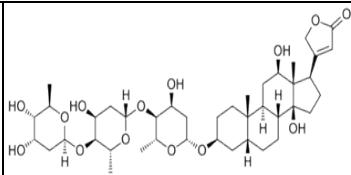
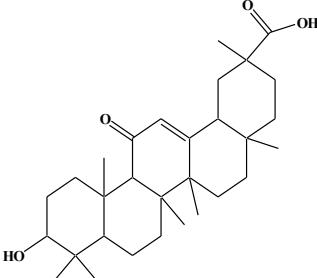
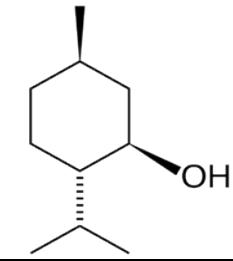
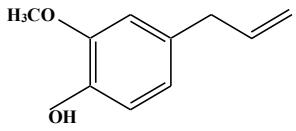
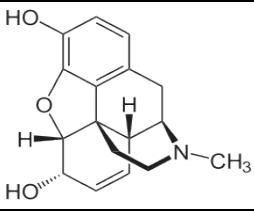
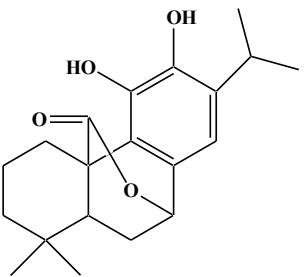
The interest in natural antioxidants is determined by the universality of their action in various redox systems and consequently broad spectra of possible applications: antioxidative phytochemicals are considered as functional ingredients for pharmaceuticals, functional foods, dietary supplements, animal feed, cosmetics and other products [25]. For instance, the interest in natural antioxidants to be used for the stabilization of lipid-containing foods has increased remarkably because of the emerging information about possible toxicity of synthetic antioxidants as well as consumer preferences towards natural food additives. Plants are the keystone of life on Earth and an indispensable resource for humans. Everything humans consume depends directly or indirectly from plants [26]. Plants regulate the water cycle, distributing and purifying water through transpiration. They store carbon and regulate the amounts of carbon dioxide and oxygen in the air. Plants also recycle the air people breathe. Most importantly, plants are a significant source of medicines. Ever since time immemorial plants are customary to cure a large number of diseases or physical strength of the body in humans [27].

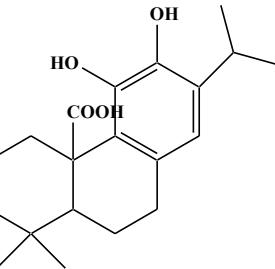
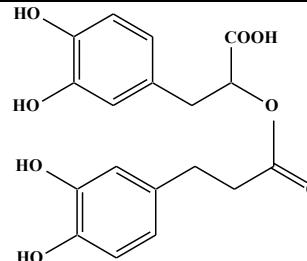
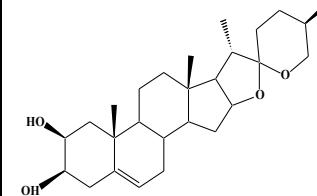
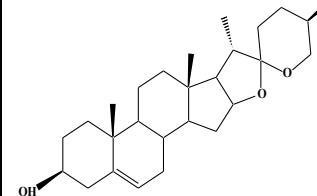
Medicinal plants are used by the worldwide population and have negligible side effects and low cost effectively compared to other systems of medicine. With the changing scenario, there is a need to enhance and promote the conservation and cultivation of natural resources for medicinal plants [28]. In addition to the requirement for conservation of medicinal plants it has also become important to protect and patent the traditional and alternative medicines [29]. Traditional system of medicines derived from plants continue to be broadly practiced in many countries on many accounts [30]. Population

rise, side effects of several synthetic drugs, inadequate supply of drugs, high cost of other treatment, and development of resistance to currently used drugs for infections have led to increased emphasis on the use of plant materials [31]. Different plant materials like leaves, flower, fruit, bark, root used to derive herbal medicines, flower and fruits are mainly used in cosmetic products in personal care, many essential oils mostly obtained from leaves, flower and fruit used in aromatherapy and other medicinal purposes [32]. So, from all these reported data we conclude that plants have become the essence of life on the earth today.

Presently, research is focused on the isolation of biologically active compounds from natural sources in the area of those diseases where presently available drugs are not significantly effective. Also herbal medicines are experiencing greater resurgence as many people are turning their attention from modern synthetic drugs toward parallel traditional medicines which are also known as alternative medicine [33]. At present time, a lot of drugs are directly derived from medicinal plants and these drugs have been used without any structural modification by many pharmaceutical industries [34]. During the past few years, a large number of novel compounds have been isolated from plants, and many of these substances have been demonstrated to possess interesting biological activities. Secondary metabolites have played a priceless role in drug discovery [35].

Table 1.2: Use and structure of drugs derived from medicinal plants







Plant name	Drug	Used in ailment	Structure
<i>Allium sativum</i>	Alliin	Cardioprotective, antidiabetic	
<i>Allium caepa</i>	Cepaene	Reducing cholesterol	
<i>Commiphora mukul</i>	Z-guggulsterone	Antiplatelet, improving thyroid	





	E-guggulsterone	Reduce cholesterol, improving the liver ability	
<i>Curcuma longa</i>	turmerone	Antifungal, Anti-inflammatory, antidermatophytic	
<i>Erythroxylum coca</i>	Cocaine	Local anesthetics, cerebral stimulant (Narcotic use)	
<i>Pilocarpus jaborandi</i>	Pilocarpine	Treatment of glaucoma	
<i>Rauwolfia serpentina</i>	Reserpine	Antihypertensive, tranquilizer	

Phenolic and polyphenolic compounds play an important role as a natural antioxidant. Phenolic compounds, ubiquitous in plants, are an essential part of the human diet and are of considerable interest due to their antioxidant properties and potential beneficial health effects [36]. These compounds range structurally from a simple phenolic molecule to complex high-molecular-weight polymers [37]. There is increasing evidence that consumption of a variety of phenolic compounds present in foods may lower the risk of health disorders because of their antioxidant activity [38]. When added to foods,

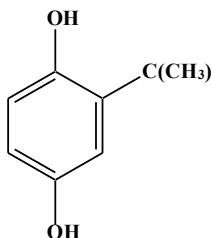
antioxidants control rancidity development, retard the formation of toxic oxidation products, maintain nutritional quality, and extend the shelf-life of products [39]. Due to safety concerns and limitations on the use of synthetic antioxidants, natural antioxidants obtained from edible materials, edible by-products and residual sources have been of increasing interest [40]. This contribution summarizes both the synthetic and natural phenolic antioxidants, emphasizing their mode of action, health effects, degradation products and toxicology. Some phenolic natural antioxidant drugs are mentioned in the below table.

Plant name	Drug	Used in ailment	Structure
<i>Atropa belladonna</i>	Atropine	Mydriatic, anhydrotic, anti spasmotic	
<i>Capsicum annuum</i>	Capsaicin		
<i>Catharanthus roseus</i>	Vinblastine	Hodgkin's lymphoma, choriocarcinoma	
<i>Cinchona officinalis</i>	Quinine	Analgesic, antipyretic, antimalarial	
	Curcumin	Antianxiety, antioxidant, treatment of obesity	

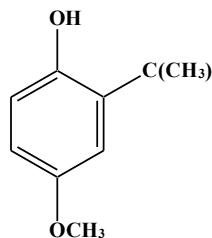
<i>Digitalis lanata</i>	Digoxin	Cardiotonic	
<i>Glycyrrhiza glabra</i>	Glycyrrhetic acid	Anti-inflammatory, peptic ulcer treatment	
<i>Mentha arvensis</i> , <i>Mentha piperita</i>	Menthol	Local anesthetic, counterirritant, Antipruritic, counterirritant, stimulant	
<i>Ocimum sanctum</i>	Eugenol	Reduction in total cholesterol, antioxidant	
<i>Papaver somniferum</i>	Morphine	Narcotic analgesic	
<i>Rosemarinus officinalis</i>	Carnosol	Antioxidant, antidiabetic, anticancerous	

<i>Trigonella foenum graecum</i>	Carnosinic acid	Antioxidant, antidiabetic, neuroprotective	
	Rosmarinic acid	Antioxidant, antipertensive effect	
	Diosgenin	Reduce cholesterol, antioxidant	
	Gitogenin	Antioxidant	

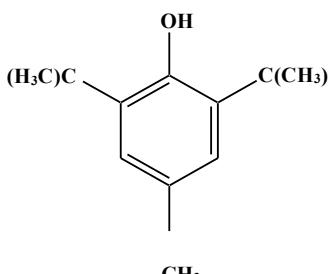
Synthetic antioxidants

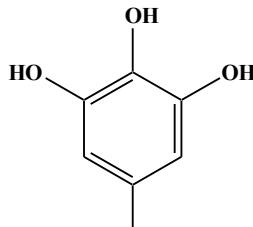

Synthetic antioxidants are chemically synthesized compounds since they do not occur in nature and are added to food as preservatives to help prevent lipid oxidation. Unlike natural antioxidants, synthetic antioxidants are widely used in the food industry; they are characterized by a diverse source of raw materials, mature technology, low price [41], few side effects [42], good scavenging activity and ease of procurement. Due to the inherent instability of natural antioxidants, several synthetic antioxidants have been used to stabilize fats and oils. At present, the most commonly used synthetic antioxidants in food are phenolic antioxidants [43, 44], for example, butylated hydroxyanisole

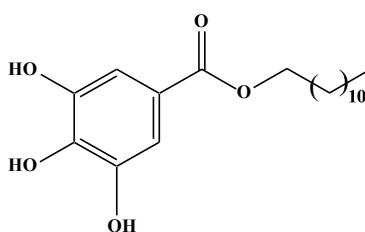
(BHA) (E-number 320, food additive), Butylated Hydroxytoluene (BHT) (E-number 321, food additive), Tertiary Butylhydroquinone (TBHQ) (E-number 319, food additive) and Propyl Gallate (PG) (E-number 310, food additive), which can be used for the protection of dietary fats and oils. Butylated Hydroxytoluene (BHT) and Butylated Hydroxyanisole (BHA) were originally developed to protect petroleum from oxidative gumming ^[45]. However, these compounds have been used as antioxidants in human foods since 1954 and are perhaps the most common antioxidants used in those foods today. BHT and BHA not only have similar names, but similar structures and antioxidant activity and are often used together in fats and oils. Despite the fact that both BHT and BHA are included in the list of substances that are "generally accepted as safe" ^[46]. Certain chronic toxicity studies have implicated BHT as potential tumor promoter when fed at high levels. In contrast, BHA and BHT, may both be important inhibitors of carcinogenesis, probably by way of their antioxidant function ^[47]. Thus, there have been some attempts to remove these antioxidants, TBHQ (tert-butylhydroxyquinone) is another synthetic antioxidant which is widely used in the feed industry. Like BHT and BHA, TBHQ has a benzene ring or phenol structure. Other examples of synthetic antioxidants are Propyl Gallate (PG), Dodecyl Gallate (DG), Octylgallate (OG) and Ethylene Diaminetetraacetic Acid (EDTA) ^[48].

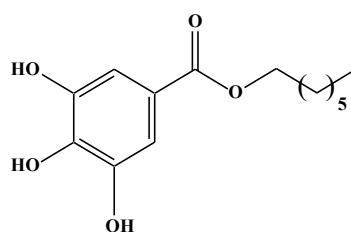

Synthetic phenolic antioxidants (SPAs) can interact with the peroxides generated by food under certain conditions to block the pathway of food deterioration, so they play a very important role in improving food stability and extending food shelf life ^[49]. Therefore, the proper use of antioxidants can not only bring good economic benefits to producers but also bring safer food to consumers.

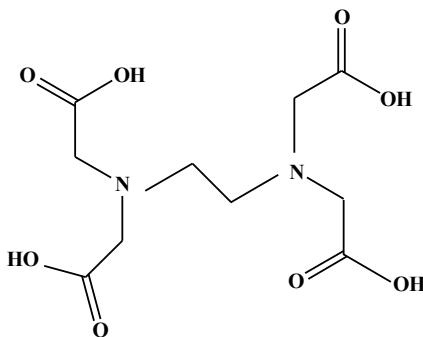
The toxicity of BHA, BHT and TBHQ has been investigated extensively using a variety of experimental conditions. Research shows that the acute toxicity of BHA is low, with a lethal dose 50 (LD50) value in mouse and rat >2000 mg/kg b.w. ^[50]. Researches show that BHA has a strong cytotoxic effect on human astrocytes ^[51, 52] and developmental toxicity on zebrafish embryos/ larvae ^[53]. The results of zebrafish embryo toxicity test (ZFET) showed that BHT had cardiotoxicity and might be a potential teratogen for aquatic organisms ^[54]. For PG, *in vivo* study showed that it can induce testicular toxicity by damaging mitochondrial or ER function and inhibiting testicular development related genes ^[55].


Structure of some synthetic antioxidants


Tertiary butylhydroquinone (TBHQ)


Butylated hydroxyanisole (BHA)


Butylated hydroxytoluene (BHT)


Propyl gallate

Dodecyl gallate

Octylgallate

Ethylene diaminetetraacetic acid

Future consideration

Antioxidants are an indispensable component of the ROS-dependent signaling network and a means of defense against excessive production of ROS. Although recent studies cast some doubt on the benefits of longterm antioxidant supplementation, which can be partly attributed to the tendency of the organism to maintain redox homeostasis, harmful sequelae of antioxidant deficiency are obvious [56]. There are numerous examples of successful use of antioxidants to ameliorate pathologic sequelae of oxidative stress. New ways of antioxidant delivery, i.e. including nanoparticles, have been proposed and new antioxidants, targeted specifically to mitochondria, the main cellular source of ROS, have been synthesized and are tested. Another approach can consist of stimulation of expression of genes coding for antioxidant proteins or antioxidant gene therapy [57]. Careful studies of their effects and side-effects are needed. On the other hand, the broad preference for compounds of natural origin cannot be ignored and is a stimulus for the search for new efficient antioxidants in nature. Taking into account that oxidative stress depends both on the ROS production and their removal by antioxidants, inhibitors of ROS-producing enzymes are also tested and may find applications for amelioration of effects of oxidative stress such compounds may also be treated as antioxidants in a broader (biomedical) sense [58]. Considering all these aspects, one may expect that the field of antioxidant research is likely to remain quite active in the years to come. There is increasing evidence that consumption of a variety of phenolic compounds present in natural foods may lower the risk of serious health disorders because of their antioxidant activity, amongst other mechanisms. Mode of action of different phenolic compound in specific body organs needs to be found. Due to safety and other limitations surrounding the use of synthetic antioxidants, natural antioxidants obtained from edible sources, by-products and co-products are alternative sources of interest [59]. Further studies on the isolation of phenolic compounds using complementary methods and their effects on antioxidant status in animal models and human subjects are needed to evaluate their potential benefits. In addition it is necessary to further confirm lack of toxicity and bioavailability of such natural phenolic extract. Delivery of isolated phenolics as dietary supplements or functional food ingredients for health promotion and disease risk reduction may also be helpful in improving the efficacy of such materials [60].

In foods that may undergo oxidation, antioxidants function as an inhibitor of oxidation reactions through various mechanisms. Nevertheless, some foods are deficient in natural antioxidants and can easily deteriorate during

processing or in storage, necessitating the use of synthetic antioxidants. However, most synthetic antioxidants are effective at low concentrations, and the addition of higher levels may lead to a pro-oxidant effect [61]. Additionally, large doses of synthetic antioxidants have been reported to impart safety problems. Therefore, caution must be taken when selecting and adding antioxidants in food systems. Meanwhile, the safety of natural antioxidants should not be taken for granted as antioxidants from natural sources are attracting more and more attention. The best way to get a variety of antioxidants in the diet is to eat foods that represent all the colors of the rainbow. Each color provides its own unique antioxidant effects. Bright orange, deep yellow fruits and vegetables like carrots, sweet potatoes, and apricots provide one type of antioxidant. Red foods like tomatoes provide another. Green vegetables, such as broccoli and cabbage, and blue or purple foods, like blueberries, each have their own antioxidant packages [62].

Conclusion

Antioxidants, regardless of their origin natural or synthetic play a crucial role in mitigating oxidative stress, thereby enhancing overall health and potentially extending lifespan. In a balanced diet, the inclusion of natural antioxidants sourced from plants, fruits, vegetables and herbs is recommended due to their enhanced bioavailability, minimal side effects, and synergistic advantages. Synthetic antioxidants demonstrate efficacy and economic viability; however, concerns regarding their safety, toxicity, and long-term health implications persist.

In comparison to synthetic antioxidants, natural molecules exhibit enhanced safety and environmental friendliness; however, they demonstrate reduced stability and effectiveness. Innovative extraction methods, structural alterations, and advancements in nanotechnology have the potential to enhance their medicinal efficacy. Antioxidants find application in pharmaceuticals, food preservation, cosmetic formulations and biological research methodologies. Advancements in science indicate that the integration of antioxidants into novel formulations and delivery technologies is expected to enhance their efficacy and broaden their applications. A comprehensive approach incorporating both natural and synthetic antioxidants will be essential moving forward. Enhancing the stability, potency and safety of natural antioxidants, as well as developing safer synthetic alternatives, necessitates continuous research. The extraction and manufacture of sustainable antioxidants will contribute to environmental conservation efforts. Antioxidant research presents significant potential for enhancing human

health and combating oxidative damage. An interdisciplinary approach that integrates chemistry, biology, pharmacology, and technology is essential to enhance their applicability.

References

1. Abbas MN. Pomegranate peels: Source of antioxidants extraction and natural dentifrices preparation. *Eur. Acad. Res.* 2014;2:3078-89.
2. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. *Food Chem.* 2013;138:2099-105.
3. Aslam MS, Ahmad MS. Worldwide importance of medicinal plants: Current and historical perspectives. *Rec Adv. Biol. Med.* 2016;2:88-93.
4. Augustyniak A, Bartosz G, Čipak A, Duburs G, Horáková L, Uczaj W, *et al.* Natural and synthetic antioxidants: An updated overview. *Free Radic. Res.* 2010;44:1216-62.
5. Barbalace MC, Zalocco L, Beghelli D, Ronci M, Scorticini S, D'Giacomo M, *et al.* Antioxidant and neuroprotective activity of extra virgin olive oil extracts obtained from *Quercetano* cultivar trees grown in different areas of the Tuscany Region (Italy). *Antioxidants.* 2021;10:421.
6. Basu A, Betts NM, Mulugeta A, Tong C, Newman E, Lyons TJ, *et al.* Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. *Nutr. Res.* 2013;3:180-7.
7. Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. *Food Chem. Toxicol.* 2013;51:15-25.
8. Cosme P, Rodríguez AB, Espino J, Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. *Antioxidants.* 2020;9:1263.
9. Daiber A, Kröller-Schön S, Frenk K, Oelze M, Kalinovic S, Vujacic-Mirski K, *et al.* Environmental noise induces the release of stress hormones and inflammatory signaling molecules leading to oxidative stress and vascular dysfunction-Signatures of the internal exposome. *Biofactors.* 2019;45:495-506.
10. Danta CC, Piplani P. The discovery and development of new potential antioxidant agents for the treatment of neurodegenerative diseases. *Expert Opin Drug Discov.* 2014;9(10):1-18.

11. Donato AJ, Machin DR, Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. *Circ. Res.* 2018;123:825-48.
12. Feresin RG, Johnson SA, Pourafshar S, Campbell JC, Jaime SJ, Navaei N, *et al.* Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: A randomized controlled trial. *Food Funct.* 2017;8:4139-49.
13. Flack JM, Adekola B. Blood pressure and the new ACC/AHA hypertension guidelines. *Trends Cardiovasc Med.* 2020;30:160-4.
14. Gangola S, Khati P, Bhatt P, Sharma A. India as the heritage of medicinal plant and their use. *Curr Trends Biomed Eng Biosci.* 2017;4(4):1-2.
15. Ham J, Lim W, You S, Song G. Butylated hydroxyanisole induces testicular dysfunction in mouse testis cells by dysregulating calcium homeostasis and stimulating endoplasmic reticulum stress. *Sci. Total Environ.* 2020;702:134775.
16. Ham J, Lim W, Park S, Bae H, You S, Song G *et al.* Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function. *Environ. Pollut.* 2019;248:845-56.
17. Hano C, Abbasi BH. Plant-based green synthesis of nanoparticles: Production, characterization and applications. *Biomolecules.* 2022;12:1-9.
18. Hassan FU, Rehman MSU, Khan MS, Ali MA, Javed A, Nawaz A, *et al.* Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. *Front Genet.* 2019;10:514.
19. Hrelia S, Angeloni C. New mechanisms of action of natural antioxidants in health and disease II. *Antioxidants.* 2021;10:1-6.
20. Jeremić S, Radenković S, Filipović M, Antić M, Amić A, Marković Z. Importance of hydrogen bonding and aromaticity indices in QSAR modeling of the anti-oxidative capacity of selected (poly)phenolic antioxidants. *J Mol Graph Model.* 2017;72:240-5.
21. Johnson SA, Feresin RG, Navaei N, Figueroa A, Elam ML, Akhavan NS, *et al.* Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation and antioxidant defense in postmenopausal women with pre-and stage 1-hypertension: A randomized controlled trial. *Food Funct.* 2017;8:372-80.

22. Kaur A, Shukla A, Shukla RK. Comparative evaluation of ABTS, DPPH, FRAP, nitric oxide assays for antioxidant potential, phenolic & flavonoid content of *Ehretia acuminata* R. Br. bark. *Int. Res J Pharm.* 2018;9(12):100-4.

23. Keenan TD, Agrón E, Keane PA, Domalpally A, Chew EY, Age-Related Eye Disease Study Research Group. Oral antioxidant and lutein/zeaxanthin supplements slow geographic atrophy progression to the fovea in age-related macular degeneration. *Ophthalmology.* 2025;132(1):14-29.

24. Kaur A, Shukla A, Shukla RK. *In vitro* antidiabetic and anti-inflammatory activities of *Ehretia acuminata* R. Br. bark. *Indian J Nat Prod Resour.* 2021;12(4):538-43.

25. Kumar J. An Ayurvedic perspective on food safety. In: Bagchi D, editor. *Food safety in the 21st century: Public health perspective.* London: Academic Press; 2017. p. 71-81.

26. Krzemieńska J, Wronka M, Mlynarska E, Franczyk B, Rysz J. Arterial hypertension-oxidative stress and inflammation. *Antioxidants.* 2022;11:1-20.

27. Lorenzo DC, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: The role of bioavailability. *Nutrients.* 2021;13:273.

28. İzol E, Turhan M, Yılmaz MA, Çağlayan C, Gülcin İ. Determination of antioxidant, antidiabetic, anticholinergic, antiglaucoma properties and comprehensive phytochemical content by LC-MS/MS of Bingöl honeybee pollen. *Food Sci. Nutr.* 2025;13(3):4531.

29. Liang L, Wu X, Zhao T, Zhao J, Li F, Zou Y, et al. *In vitro* bio-accessibility and antioxidant activity of anthocyanins from mulberry (*Morus atropurpurea* Roxb.) following simulated gastrointestinal digestion. *Food Res Int.* 2012;46:76-82.

30. Park S, Lee JY, Lim W, You S, Song G. Butylated hydroxyanisole exerts neurotoxic effects by promoting cytosolic calcium accumulation and endoplasmic reticulum stress in astrocytes. *J Agric. Food Chem.* 2019;67(34):9615-29.

31. Aouadi A, Saoud DH, Laouini SE, Rebiai A, Achouri A, Mohammed HA, et al. Synergistic chitin-zinc nanocomposites from shrimp shell waste: characterization, antioxidant and antibacterial properties. *Biomass Convers Biorefin.* 2025;15(1):545-61.

32. Raja K, Balamurugan V, Selvakumar S, Vasanth K. *Striga angustifolia*-mediated synthesis of silver nanoparticles: Anti-microbial, antioxidant and anti-proliferative activity in apoptotic P53 signalling pathway. *J Drug Deliv Sci Technol.* 2022;67:102945.
33. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. *Nat Rev Mol. Cell Biol.* 2024;25(1):13-33.
34. Rao RV. Ayurveda and the science of aging. *J Ayurveda Integr Med.* 2018;9:225-32.
35. Al-Dalaen SM, Al-Qtaitat AI. Oxidative stress versus antioxidants. *Am J Biosci Bioeng.* 2014;2(5):60-71.
36. Sarkar M, Devi A. Analysis of medicinal and economically important plant species of Hollongapar Gibbon wildlife sanctuary, Assam, northeast India. *Trop Plant Res.* 2017;4(3):486-95.
37. Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total antioxidant capacity: biochemical aspects and clinical significance. *Int. J Mol. Sci.* 2023;24(13):10978.
38. Sarmah R, Kanta BS, Dutta R, Nath D, Pokhrel H, Mudoi LP, *et al.* Toxicity of a synthetic phenolic antioxidant, Butyl Hydroxytoluene (BHT), in vertebrate model zebrafish embryo (*Danio rerio*). *Aquac Res.* 2020;51(9):3839-46.
39. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: A review. *J Funct. Foods.* 2015;18:820-97.
40. Shukla A, Anchal, Shukla RK, Kaur A. Isolation and identification of two triterpenoids from ethyl acetate extract of bark of *Boehmeria rugulosa*. *Res J Pharm Technol.* 2021;14(6):2919-23.
41. Shukla A, Kaur A. A systematic review of traditional uses and bioactive phytoconstituents of genus *Ehretia*. *Asian J Pharm Clin Res.* 2018;11(6):88-100.
42. Shukla A, Kaur A, Shukla RK, Anchal A. Comparative study of *in vitro* antioxidant potential, photoprotective screening of *Ehretia acuminata* R.Br. leaves. *Indian Drugs.* 2019;56(9):30-6.
43. Shukla A, Kaur A, Shukla RK, Anchal. Comparative evaluation of antioxidant capacity, total flavonoid and phenolic content of *Ehretia acuminata* R. Br. fruit. *Res J Pharm Technol.* 2019;12(4):1811-6.

44. Shukla A, Kaur A, Shukla RK. Evaluation of different biological activities of leaves of *Ehretia acuminata* R.Br. Indian Drugs. 2021;58(4):42-9.

45. Shukla RK, Nandan K, Shukla A, Kaur A. Nutritional importance and phytochemical investigation of sepals of *Bombax ceiba* Linn. Plant Arch. 2020;20:100-3.

46. Shukla RK, Nandan K, Shukla A, Kaur A. Phytochemical analysis and nutritive value of *Bombax ceiba* Linn. Plant Arch. 2020;20:1201-6.

47. Shukla RK, Nandan K, Shukla A, Kaur A, Rana D. Review on traditional uses, biological activities and phytoconstituents of *Bombax ceiba* Linn. Res J Pharm Technol. 2020;13(11):5607-12.

48. Shukla A, Pokhriyal P, Shukla RK, Kaur A. A green and facile approach for antidiabetic and anti-inflammatory potency of *Ficus subincisa* fruit. Indian Drugs. 2021;58(8):68-74.

49. Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N *et al.* Potential applications of antioxidants - A review. J Pharm Res. 2013;7:828-35.

50. Sun Y, Lu Y, Saredy J, Wang X, Drummer IC, Shao Y, *et al.* ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020;37:101696.

51. Taravati A, Tohidi F. Comprehensive analysis of oxidative stress markers and antioxidant status in preeclampsia. Taiwan J Obstet Gynecol. 2018;57:779-90.

52. Thalluri J. A research on medicinal plants. Res Rev J Med Org Chem. 2016;3(2):157-65.

53. Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC *et al.* Oxidative stress: A unifying paradigm in hypertension. Can J Cardiol. 2020;36:659-70.

54. Umebayashi R, Uchida HA, Okuyama Y, Kakio Y, Hanayama Y, Shikata K, *et al.* The clinical efficacy of angiotensin II type 1 receptor blockers on inflammatory markers in patients with hypertension: A multicenter randomized-controlled trial; MUSCAT-3 study. Biomarkers. 2019;24:255-61.

55. Wu H, Xu B. Inhibitory effects of onion against α -glucosidase activity and its correlation with phenolic antioxidants. *Int. J. Food Prop.* 2014;17:599-609.
56. Xanthis V, Fitsiou E, Voulgaridou G, Bogadakis A, Chlichlia K, Galanis A, *et al.* Antioxidant and cytoprotective potential of the essential oil *Pistacia lentiscus* var. chia and its major components myrcene and α -pinene. *Antioxidants*. 2021;10:1-19.
57. Xia L, Guo Q, Tu P, Chai X. The genus *Casearia*: a phytochemical and pharmacological overview. *Phytochem Rev.* 2014;13(4):649-74.
58. Xu X, Liu A, Hu S, Ares I, Martínez-Larrañaga M, Wang X, *et al.* Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. *Food Chem.* 2021;353:129488.
59. Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. *Life Sci.* 2020;241:117152.
60. Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Antioxidative potentials of incretin-based medications. *Oxid Med Cell Longev.* 2021;2021:1-9.
61. Li K, Zhong W, Li P, Ren J, Jiang K, Wu W, *et al.* Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. *Int. J. Biol. Macromol.* 2023;251:125992.
62. Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, *et al.* Antioxidant activity, metabolism, and bioavailability of polyphenols in the diet of animals. *Antioxidants*. 2023;12(6):1141.