

E-Content

IFTM University, Moradabad

What is data processing?

Data in its raw form is not useful to any organization. Data processing is the method of collecting

raw data and translating it into usable information. It is usually performed in a step-by-step

process by a team of data scientists and data engineers in an organization. The raw data is

collected, filtered, sorted, processed, analyzed, stored and then presented in a readable format.

Data processing is crucial for organizations to create better business strategies and increase their

competitive edge. By converting the data into a readable format like graphs, charts and

documents, employees throughout the organization can understand and use the data.

Data Processing Cycle

The data processing cycle consists of a series of steps where raw data (input) is fed into a process

(CPU) to produce actionable insights (output). Each step is taken in a specific order, but the

entire process is repeated in a cyclic manner. The first data processing cycle's output can be

stored and fed as the input for the next cycle.

Fig: Data processing cycle (source)

Generally, there are six main steps in the data processing cycle:

Step 1: Collection

The collection of raw data is the first step of the data processing cycle. The type of raw data

collected has a huge impact on the output produced. Hence, raw data should be gathered from

defined and accurate sources so that the subsequent findings are valid and usable. Raw data can

include monetary figures, website cookies, profit/loss statements of a company, user behavior,

etc.

Step 2: Preparation

Data preparation or data cleaning is the process of sorting and filtering the raw data to remove

unnecessary and inaccurate data. Raw data is checked for errors, duplication, miscalculations or

missing data, and transformed into a suitable form for further analysis and processing. This is

done to ensure that only the highest quality data is fed into the processing unit.

Step 3: Input

In this step, the raw data is converted into machine readable form and fed into the processing

unit. This can be in the form of data entry through a keyboard, scanner or any other input source.

Step 4: Data Processing

In this step, the raw data is subjected to various data processing methods using machine learning

and artificial intelligence algorithms to generate a desirable output. This step may vary slightly

from process to process depending on the source of data being processed (data lakes, online

databases, connected devices, etc.) and the intended use of the output.

Step 5: Output (INFORMATION)

The data is finally transmitted and displayed to the user in a readable form like graphs, tables,

vector files, audio, video, documents, etc. This output can be stored and further processed in the

next data processing cycle.

Step 6: Storage

The last step of the data processing cycle is storage, where data and metadata is stored for

further use. This allows for quick access and retrieval of information whenever needed, and also

allows it to be used as input in the next data processing cycle directly.

Data Processing Methods

There are three main data processing methods - manual, mechanical and electronic.

• Manual Data Processing

In this data processing method, data is processed manually. The entire process of data collection,

filtering, sorting, calculation and other logical operations are all done with human intervention

without the use of any other electronic device or automation software. It is a low-cost method

and requires little to no tools, but produces high errors, high labor costs and lots of time.

• Mechanical Data Processing

Data is processed mechanically through the use of devices and machines. These can include

simple devices such as calculators, typewriters, printing press, etc. Simple data processing

operations can be achieved with this method. It has much lesser errors than manual data

processing, but the increase of data has made this method more complex and difficult.

• Electronic Data Processing

Data is processed with modern technologies using data processing software and programs. A set

of instructions is given to the software to process the data and yield output. This method is the

most expensive but provides the fastest processing speeds with the highest reliability and

accuracy of output.

Examples of Data Processing:-

Data processing occurs in our daily lives whether we may be aware of it or not. Here are some

real-life examples of data processing:

• A stock trading software that converts millions of stock data into a simple graph

• An e-commerce company uses the search history of customers to recommend similar

products

• A self-driving car uses real-time data from sensors to detect if there are pedestrians and

other cars on the road

Types of Data Processing

There are number of methods and techniques which can be adopted for processing of data

depending upon the requirements, time availability, software and hardware capability of the

technology being used for data processing. There are number of types of data processing

methods.

• Batch Processing

This is one of the widely used type of data processing which is also known as Serial/Sequential,

Tacked/Queued offline processing. The fundamental of this type of processing is that different

jobs of different users are processed in the order received. Once the stacking of jobs is complete

they are provided/sent for processing while maintaining the same order. This processing of a

large volume of data helps in reducing the processing cost thus making it data processing

economical. Batch Processing is a method where the information to be organized is sorted into

groups to allow for efficient and sequential processing.

• Online Processing

Online Processing is a method that utilizes Internet connections and equipment directly attached

to a computer. It is used mainly for information recording and research. Real-Time Processing is

a technique that can respond almost immediately to various signals to acquire and process

information. Distributed Processing is commonly utilized by remote workstations connected to

one big central workstation or server. ATMs are good examples of this data processing method.

Examples include: Examination, payroll and billing system.

• Real time processing

As the name suggests this method is used for carrying out real-time processing. This is required

where the results are displayed immediately or in lowest time possible. The data fed to the

software is used almost instantaneously for processing purpose. The nature of processing of this

type of data processing requires use of internet connection and data is stored/used online. No lag

is expected/acceptable in this type and receiving and processing of transaction is carried out

simultaneously. This method is costly than batch processing as the hardware and software

capabilities are better. Example includes banking system, tickets booking for flights, trains,

movie tickets, rental agencies etc. This technique can respond almost immediately to various

signals to acquire and process information. These involve high maintenance and upfront cost

attributed to very advanced technology and computing power. Time saved is maximum in this

case as the output is seen in real time. For example in banking transactions.

• Distributed Processing

This method is commonly utilized by remote workstations connected to one big central

workstation or server. ATMs are good examples of this data processing method. All the end

machines run on a fixed software located at a particular place and make use of exactly same

information and sets of instruction.

• Multiprocessing

This type of processing perhaps the most widely used types of data processing. It is used almost

everywhere and forms the basis of all computing devices relying on processors. Multi processing

makes use of CPUs (more than one CPU). The task or sets of operations are divided between

CPUs available simultaneously thus increasing efficiency and throughput. The breakdown of

jobs which needs be performed are sent to different CPUs working parallel within the

mainframe. The result and benefit of this type of processing is the reduction in time required and

increasing the output. Moreover CPUs work independently as they are not dependent on other

CPU; failure of one CPU does not result in halting the complete process as the other CPUs

continue to work. Examples include processing of data and instructions in computer, laptops,

mobile phones etc.

• Time sharing

Time based used of CPU is the core of this data processing type. The single CPU is used by

multiple users. All users share same CPU but the time allocated to all users might differ. The

processing takes place at different intervals for different users as per allocated time. Since

multiple users can use this type it is also referred as multi access system. This is done by

providing a terminal for their link to main CPU and the time available is calculated by dividing

the CPU time between all the available users as scheduled.

Part -2

Types of Data Processing

There are different types of data processing based on the source of data and the steps taken by

the processing unit to generate an output. There is no one-size-fits-all method that can be used

for processing raw data.

Type Uses

Batch Processing Data is collected and processed
in batches. Used for large

amounts of data.

Eg: payroll system

Real-time Processing

Data is processed within seconds
when the input is given. Used for
small amounts of data.

Eg: withdrawing money from
ATM

Online Processing

Data is automatically fed into the
CPU as soon as it becomes
available. Used for continuous
processing of data.

Eg: barcode scanning

Multiprocessing

Data is broken down into frames
and processed using two or more
CPUs within a single computer
system. Also known as parallel
processing.

Eg: weather forecasting

Time-sharing
Allocates computer resources
and data in time slots to several
users simultaneously.

BCAGE 203

Unit-2

Data Storage Devices

Data storage defined

There are two types of digital information: input and output data. Users provide the input
data. Computers provide output data. But a computer's CPU can't compute anything or
produce output data without the user's input.

Users can enter the input data directly into a computer. However, they have found early on in
the computer-era that continually entering data manually is time- and energy-prohibitive. One
short-term solution is computer memory, also known as random access memory (RAM). But
its storage capacity and memory retention are limited. Read-only memory (ROM) is, as the
name suggests, the data can only be read but not necessarily edited. They control a
computer's basic functionality.

How data storage works

In simple terms, modern computers, or terminals, connect to storage devices either directly or
through a network. Users instruct computers to access data from and store data to these
storage devices. However, at a fundamental level, there are two foundations to data storage:
the form in which data takes and the devices data is recorded and stored on.

Data storage devices

To store data, regardless of form, users need storage devices. Data storage devices come in
two main categories: direct area storage and network-based storage.

Direct area storage, also known as direct-attached storage (DAS), is as the name implies.
This storage is often in the immediate area and directly connected to the computing machine
accessing it. Often, it's the only machine connected to it. DAS can provide decent local
backup services, too, but sharing is limited. DAS devices include floppy disks, optical discs
—compact discs (CDs) and digital video discs (DVDs)—hard disk drives (HDD), flash
drives and solid-state drives (SSD).
Network-based storage allows more than one computer to access it through a network,
making it better for data sharing and collaboration. Its off-site storage capability also makes it
better suited for backups and data protection. Two common network-based storage setups are
network-attached storage (NAS) and storage area network (SAN).

NAS is often a single device made up of redundant storage containers or a redundant array of
independent disks (RAID). SAN storage can be a network of multiple devices of various
types, including SSD and flash storage, hybrid storage, hybrid cloud storage, backup software
and appliances, and cloud storage. Here are how NAS and SAN differ:

NAS

 Single storage device or RAI
 File storage system
 TCP/IP Ethernet network
 Limited users
 Limited speed
 Limited expansion options
 Lower cost and easy setup

SAN

 Network of multiple devices
 Block storage system
 Fibre Channel network
 Optimized for multiple users
 Faster performance
 Highly expandable
 Higher cost and complex setup

10 Digital Data Storage Devices for Computers
1. Hard Drive Disks
2. Floppy Disks
3. Tapes
4. Compact Discs (CDs)
5. DVD and Blu-ray Discs
6. USB Flash Drives
7. Secure Digital Cards (SD Card)s
8. Solid-State Drives (SSDs)
9. Cloud Storage
10. Punch Cards

1. Hard Disk Drives

A hard disk drive (also known as a hard drive, HD, or HDD) can be found installed in almost
every desktop and laptop computer. It stores files for the operating system and software
programs as well as user documents, such as photographs, text files, videos, and audio. The
hard drive uses magnetic storage to record and retrieve digital information to and from one or
more fast-spinning disks.

2. Floppy Disks

Also know as a diskette, floppy, or FD, the floppy disk is another type of storage medium that
uses magnetic storage technology to store information. Floppy disks were once a common
storage device for computers and were very common from the mid-1970s through to the start
of the 21st century.

The earliest floppies were 8 inches (203 mm) in size, but these were replaced first by 5.25-
inch (133 mm) disk drives and finally by 3.5-inch (90 mm) versions.

3. Tapes

In the past, magnetic tape was often used for digital data storage because of its low cost and
ability to store large amounts of data. The technology essentially consisted of a thin,
magnetically coated piece of plastic wrapped around wheels. Its relative slowness and
unreliability compared to other data storage solutions have resulted in it now being largely
abandoned as a storage medium.

4. Compact Discs (CDs)

The compact disc, (or CD for short) is a form of optical storage, a technology that employs
lasers and lights to read and write data. Initially, compact discs were used purely for music,
but in the late 1980s, they began to be used for computer data storage.

Initially, the compact discs that were introduced were CD-ROMs (read-only), but these were
followed by CD-Rs (writable compact discs) and CD-RWs (rewritable compact discs).

5. DVD and Blu-ray Discs

The DVD (digital versatile disc) and Blu-ray disc (BD) are formats of digital optical disc data
storage which have superseded compact discs, mainly because of their much greater storage
capacity.

A Blu-ray disc, for example, can store 25 GB (gigabytes) of data on a single-layer disc and
50 GB on a dual-layer disc. In comparison, a standard CD is the same physical size, but only
holds 700 MB (megabytes) of digital data.

USB flash drives are often used by students and professionals to save work from one
computer and continue working on it on another.

6. USB Flash Drives

Also known as a thumb drive, pen drive, flash drive, memory stick, jump drive, and USB
stick, the USB flash drive is a flash-memory data-storage device that incorporates an
integrated USB interface. Flash memory is generally more efficient and reliable than optical
media, being smaller, faster, and possessing much greater storage capacity. Flash drives are
also more durable due to a lack of moving parts.

7. Secure Digital Cards (SD Cards)

SD cards are commonly used in multiple electronic devices, including digital cameras and
mobile phones. Although there are different sizes, classes, and capacities available, they all
use a rectangular design with one side "chipped off" to prevent the card from being inserted
into a camera or computer the wrong way.

8. Solid-State Drives (SSDs)

A solid-state drive uses flash memory to store data and is sometimes used in devices such as
netbooks, laptops, and desktop computers instead of a traditional hard disk drive.

The advantages of an SSD over an HDD include a faster read/write speed, noiseless
operation, greater reliability, and lower power consumption. The biggest downside is cost,
with an SSD offering lower capacity than an equivalently priced HDD.

9. Cloud Storage

With users increasingly operating multiple devices in multiple places, many are adopting
online cloud-computing solutions. Cloud computing basically involves accessing services
over a network via a collection of remote servers.

Although the idea of a "cloud of computers" may sound rather abstract to those unfamiliar
with this metaphorical concept, in practice, it can provide powerful storage solutions for
devices that are connected to the internet.

10. Punch Cards

Punch cards (or punched cards) were a common method of data storage used with early
computers. Basically, they consisted of a paper card with punched or perforated holes created
by hand or machine. The cards were entered into computers to enable the storage and
accessing of information.

This data-storage medium pretty much disappeared as new and better technologies were
developed.

What Does Tape Cartridge Mean?

A tape cartridge is a storage device that contains a spool of magnetic tape used to store
different kinds of data, from corporate data to audio and video files. Each cartridge is
designed to fit into a compatible audio/video recorder system or computer system. In the
context of computing, however, a tape cartridge is the magnetic tape storage cartridge used in
tape library units to store digital data on magnetic tape, which is packaged in cassettes and
cartridges.

Tape cartridges are also known as data cartridges.

6 Common Causes of Digital Data Loss

There are a number of ways that digital data can be lost. I've listed six of the most common
ways below. Generally speaking, the best way to protect data is to back it up in different
places.

1. Accidental deletions: This is a very common problem and has happened to most
people who deal with data, including myself. As well as deletion, reformatting a
device can also result in the loss of stored information.

2. Power failures: Many electronic devices depend on electricity to function properly
and maintain data. A loss of power can therefore be disruptive or destructive,
especially in cases where the power loss is sudden. As well as power losses, power
surges can also cause problems.

3. Spills, drops, and other physical accidents: Anything that causes physical damage
to the storage device can corrupt data or prevent access to it. Even minor accidents,
such as knocking over a cup of coffee, might be all it takes to cause the loss of large
amounts of data.

4. Viruses and other forms of malware: Many modern forms of digital data storage
are exposed to the internet. This means that the data risks being corrupted by
malware, either directly, or via wider damage being caused to say, the operating
system.

5. Theft: Whether through burglary, pickpocketing, mugging, or other forms of theft,
you can lose the entire device and all the information that's on it.

6. Fires, floods, explosions, and other catastrophic events: These can all destroy vast
amounts of data. This is one of the main reasons why data should never be backed up
in the same building, but rather in a separate place.

Fixed And Variable Length Records

A fixed length record is one where the length of the fields in each record has been set to be a
certain maximum number of characters long. Suppose a field that was going to contain a
name was set to be 25 characters long. This means that the field could only ever contain up to
25 characters. If all the fields in the record have a fixed length like this then the record is said
to be a fixed length record. The problem with fixed length records is that each field very
rarely contains the maximum number of characters allowed. This means that a lot of space is
needlessly set aside and wasted. Also, values sometimes cannot be entered because they are
too large to fit inside the allowed space in a field. The advantage of fixed length records is
that they make file processing much easier because the start and end of each record is always
a fixed number of characters apart. This makes it much easier to locate both indicidual
records and fields.

A variable length record is one where the length of a field can change to allow data of any
size to fit. The advantage of variable length records is that space is not wasted, only the space

needed is ever used. The main problem with variable length records is that it is much more
difficult to locate the start and end of individual records and fields. This is because they are
not separated by a fixed amount of characters. To separate variable length recordseach field
has a special character to mark where it ends- called an end- of- field marker. When records
need to be located the computer must count through the end- of- field markers to locate
individual records and fields.

A file can contain:

 Fixed-length records - all the records are exactly the same length

 Variable-length records - the length of each record varies

Differentiate between fixed length records and variable length records.

Fixed length records:-
1.All the records in the file are of same size.
2. Leads to memory wastage.
3. Access of the records is easier and faster.

Variable length records:-
1.Different records in the file have different sizes.
2. Memory efficient.
3. Access of the records is slow.

Disk Structure in Operating System: The actual physical details of a modern hard disk may
be quite complicated. Simply, there are one or more surfaces, each of which contains several
tracks, each of which is divided into sectors.

There is one read/write head for every surface of the disk. Also, the same track on all surfaces
is known as a cylinder, When talking about movement of the read/write head, the cylinder is
a useful concept, because all the heads (one for each surface), move in and out of the disk
together.

We say that the “read/write head is at cylinder #2", when we mean that the top read/write
head is at track #2 of the top surface, the next head is at track #2 of the next surface, the third
head is at track #2 of the third surface, etc.

The unit of information transfer is the sector (though often whole tracks may be read and
written, depending on the hardware). As far as most file-systems are concerned, though, the
sectors are what matter. In fact, we usually talk about a 'block device'. A block often
corresponds to a sector, though it need not do, several sectors may be aggregated to form a
single logical block.

https://1.bp.blogspot.com/-OoEA4OBDg7A/XqnXuSUQrsI/AAAAAAAACiA/td1UnDAPhq4iyVYUKZjRG6whOgb-O20tACNcBGAsYHQ/s1600/Disk-Structure-Diagram.webp

File Structures: Physical Storage Media File Organization, Organization of records into Blocks, SequentialFiles, Indexing and Hashing, Primary
indices, Secondary indices, B+ Tree index Files, B Tree index Files, Indexing and Hashing Techniques and their Comparisons.

What is File?

File is a collection of records related to each other. The file size is limited by the size of memory and storage
medium.

There are two important features of file:

1. File Activity
2. File Volatility

File activity specifies percent of actual records which proceed in a single run.

File volatility addresses the properties of record changes. It helps to increase the efficiency of disk design
than tape.

File Organization

File organization ensures that records are available for processing. It is used to determine an efficient file
organization for each base relation.

For example, if we want to retrieve employee records in alphabetical order of name. Sorting the file by
employee name is a good file organization. However, if we want to retrieve all employees whose marks are in a
certain range, a file is ordered by employee name would not be a good file organization.

Types of File Organization

There are three types of organizing the file:

1. Sequential access file organization
2. Direct access file organization
3. Indexed sequential access file organization

1. Sequential access file organization

• Storing and sorting in contiguous block within files on tape or disk is called as sequential access file
organization.

• In sequential access file organization, all records are stored in a sequential order. The records are arranged in

the ascending or descending order of a key field.

• Sequential file search starts from the beginning of the file and the records can be added at the end of the file.

• In sequential file, it is not possible to add a record in the middle of the file without rewriting the file.
Advantages of sequential file

• It is simple to program and easy to design.

• Sequential file is best use if storage space.
Disadvantages of sequential file

• Sequential file is time consuming process.

• It has high data redundancy.

• Random searching is not possible.
2. Direct access file organization

• Direct access file is also known as random access or relative file organization.

• In direct access file, all records are stored in direct access storage device (DASD), such as hard disk. The

records are randomly placed throughout the file.

• The records does not need to be in sequence because they are updated directly and rewritten back in the

same location.

• This file organization is useful for immediate access to large amount of information. It is used in accessing

large databases.

• It is also called as hashing.
Advantages of direct access file organization

• Direct access file helps in online transaction processing system (OLTP) like online railway reservation system.

• In direct access file, sorting of the records are not required.

• It accesses the desired records immediately.

• It updates several files quickly.

• It has better control over record allocation.
Disadvantages of direct access file organization

• Direct access file does not provide back up facility.

• It is expensive.

• It has less storage space as compared to sequential file.
3. Indexed sequential access file organization

• Indexed sequential access file combines both sequential file and direct access file organization.

• In indexed sequential access file, records are stored randomly on a direct access device such as magnetic disk

by a primary key.

• This file have multiple keys. These keys can be alphanumeric in which the records are ordered is called

primary key.

• The data can be access either sequentially or randomly using the index. The index is stored in a file and read

into memory when the file is opened.

Advantages of Indexed sequential access file organization

• In indexed sequential access file, sequential file and random file access is possible.

• It accesses the records very fast if the index table is properly organized.

• The records can be inserted in the middle of the file.

• It provides quick access for sequential and direct processing.

• It reduces the degree of the sequential search.
Disadvantages of Indexed sequential access file organization

• Indexed sequential access file requires unique keys and periodic reorganization.

• Indexed sequential access file takes longer time to search the index for the data access or retrieval.

• It requires more storage space.

• It is expensive because it requires special software.

• It is less efficient in the use of storage space as compared to other file organizations.

File Organization
o The File is a collection of records. Using the primary key, we can access the records. The type and frequency of access

can be determined by the type of file organization which was used for a given set of records.

o File organization is a logical relationship among various records. This method defines how file records are mapped onto
disk blocks.

o File organization is used to describe the way in which the records are stored in terms of blocks, and the blocks are
placed on the storage medium.

o The first approach to map the database to the file is to use the several files and store only one fixed length record in any
given file. An alternative approach is to structure our files so that we can contain multiple lengths for records.

o Files of fixed length records are easier to implement than the files of variable length records.

Objective of file organization

o It contains an optimal selection of records, i.e., records can be selected as fast as possible.

o To perform insert, delete or update transaction on the records should be quick and easy.

o The duplicate records cannot be induced as a result of insert, update or delete.

o For the minimal cost of storage, records should be stored efficiently.

Types of file organization:
File organization contains various methods. These particular methods have pros and cons on the basis of access or selection. In
the file organization, the programmer decides the best-suited file organization method according to his requirement.

Types of file organization are as follows:

o Sequential file organization

o Heap file organization

o Hash file organization

o B+ file organization

o Indexed sequential access method (ISAM)

o Cluster file organization

Sequential File Organization
This method is the easiest method for file organization. In this method, files are stored sequentially. This method can be
implemented in two ways:

1. Pile File Method:

o It is a quite simple method. In this method, we store the record in a sequence, i.e., one after another. Here, the record
will be inserted in the order in which they are inserted into tables.

o In case of updating or deleting of any record, the record will be searched in the memory blocks. When it is found, then it
will be marked for deleting, and the new record is inserted.

Insertion of the new record:

Suppose we have four records R1, R3 and so on upto R9 and R8 in a sequence. Hence, records are nothing but a row in the
table. Suppose we want to insert a new record R2 in the sequence, then it will be placed at the end of the file. Here, records are
nothing but a row in any table.

2. Sorted File Method:
o In this method, the new record is always inserted at the file's end, and then it will sort the sequence in ascending or

descending order. Sorting of records is based on any primary key or any other key.

o In the case of modification of any record, it will update the record and then sort the file, and lastly, the updated record is
placed in the right place.

Insertion of the new record:

Suppose there is a preexisting sorted sequence of four records R1, R3 and so on upto R6 and R7. Suppose a new record R2 has
to be inserted in the sequence, then it will be inserted at the end of the file, and then it will sort the sequence.

Pros of sequential file organization

o It contains a fast and efficient method for the huge amount of data.

o In this method, files can be easily stored in cheaper storage mechanism like magnetic tapes.

o It is simple in design. It requires no much effort to store the data.

o This method is used when most of the records have to be accessed like grade calculation of a student, generating the
salary slip, etc.

o This method is used for report generation or statistical calculations.

Cons of sequential file organization

o It will waste time as we cannot jump on a particular record that is required but we have to move sequentially which
takes our time.

o Sorted file method takes more time and space for sorting the records.

Hash File Organization
Hash File Organization uses the computation of hash function on some fields of the records. The hash function's output
determines the location of disk block where the records are to be placed.

When a record has to be received using the hash key columns, then the address is generated, and the whole record is retrieved
using that address. In the same way, when a new record has to be inserted, then the address is generated using the hash key
and record is directly inserted. The same process is applied in the case of delete and update.

In this method, there is no effort for searching and sorting the entire file. In this method, each record will be stored randomly in
the memory.

B+ File Organization
o B+ tree file organization is the advanced method of an indexed sequential access method. It uses a tree-like structure to

store records in File.

o It uses the same concept of key-index where the primary key is used to sort the records. For each primary key, the
value of the index is generated and mapped with the record.

o The B+ tree is similar to a binary search tree (BST), but it can have more than two children. In this method, all the
records are stored only at the leaf node. Intermediate nodes act as a pointer to the leaf nodes. They do not contain any
records.

The above B+ tree shows that:
o There is one root node of the tree, i.e., 25.

o There is an intermediary layer with nodes. They do not store the actual record. They have only pointers to the leaf node.

o The nodes to the left of the root node contain the prior value of the root and nodes to the right contain next value of the
root, i.e., 15 and 30 respectively.

o There is only one leaf node which has only values, i.e., 10, 12, 17, 20, 24, 27 and 29.

o Searching for any record is easier as all the leaf nodes are balanced.

o In this method, searching any record can be traversed through the single path and accessed easily.

Pros of B+ tree file organization

o In this method, searching becomes very easy as all the records are stored only in the leaf nodes and sorted the
sequential linked list.

o Traversing through the tree structure is easier and faster.

o The size of the B+ tree has no restrictions, so the number of records can increase or decrease and the B+ tree structure
can also grow or shrink.

o It is a balanced tree structure, and any insert/update/delete does not affect the performance of tree.

Cons of B+ tree file organization

o This method is inefficient for the static method.

Indexed sequential access method (ISAM)
ISAM method is an advanced sequential file organization. In this method, records are stored in the file using the primary key.
An index value is generated for each primary key and mapped with the record. This index contains the address of the record in
the file.

If any record has to be retrieved based on its index value, then the address of the data block is fetched and the record is
retrieved from the memory.

Pros of ISAM:

o In this method, each record has the address of its data block, searching a record in a huge database is quick and easy.

o This method supports range retrieval and partial retrieval of records. Since the index is based on the primary key values,
we can retrieve the data for the given range of value. In the same way, the partial value can also be easily searched,
i.e., the student name starting with 'JA' can be easily searched.

Cons of ISAM

o This method requires extra space in the disk to store the index value.

o When the new records are inserted, then these files have to be reconstructed to maintain the sequence.

o When the record is deleted, then the space used by it needs to be released. Otherwise, the performance of the database
will slow down.

Cluster file organization
o When the two or more records are stored in the same file, it is known as clusters. These files will have two or more

tables in the same data block, and key attributes which are used to map these tables together are stored only once.

o This method reduces the cost of searching for various records in different files.

o The cluster file organization is used when there is a frequent need for joining the tables with the same condition. These
joins will give only a few records from both tables. In the given example, we are retrieving the record for only particular
departments. This method can't be used to retrieve the record for the entire department.

In this method, we can directly insert, update or delete any record. Data is sorted based on the key with which searching is
done. Cluster key is a type of key with which joining of the table is performed.

Types of Cluster file organization:
Cluster file organization is of two types:

1. Indexed Clusters:

In indexed cluster, records are grouped based on the cluster key and stored together. The above EMPLOYEE and DEPARTMENT
relationship is an example of an indexed cluster. Here, all the records are grouped based on the cluster key- DEP_ID and all the
records are grouped.

2. Hash Clusters:

It is similar to the indexed cluster. In hash cluster, instead of storing the records based on the cluster key, we generate the
value of the hash key for the cluster key and store the records with the same hash key value.

Pros of Cluster file organization

o The cluster file organization is used when there is a frequent request for joining the tables with same joining condition.

o It provides the efficient result when there is a 1:M mapping between the tables.

Cons of Cluster file organization

o This method has the low performance for the very large database.

o If there is any change in joining condition, then this method cannot use. If we change the condition of joining then
traversing the file takes a lot of time.

B+ Tree
o The B+ tree is a balanced binary search tree. It follows a multi-level index format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures that all leaf nodes remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a B+ tree can support random access as well as
sequential access.

Structure of B+ Tree

o In the B+ tree, every leaf node is at equal distance from the root node. The B+ tree is of the order n where n is fixed for
every B+ tree.

o It contains an internal node and leaf node.

Internal node

o An internal node of the B+ tree can contain at least n/2 record pointers except the root node.

o At most, an internal node of the tree contains n pointers.

Leaf node

o The leaf node of the B+ tree can contain at least n/2 record pointers and n/2 key values.

o At most, a leaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to next leaf node.

Searching a record in B+ Tree
Suppose we have to search 55 in the below B+ tree structure. First, we will fetch for the intermediary node which will direct to
the leaf node that can contain a record for 55.

So, in the intermediary node, we will find a branch between 50 and 75 nodes. Then at the end, we will be redirected to the
third leaf node. Here DBMS will perform a sequential search to find 55.

B+ Tree Insertion
Suppose we want to insert a record 60 in the below structure. It will go to the 3rd leaf node after 55. It is a balanced tree, and
a leaf node of this tree is already full, so we cannot insert 60 there.

In this case, we have to split the leaf node, so that it can be inserted into tree without affecting the fill factor, balance and
order.

The 3rd leaf node has the values (50, 55, 60, 65, 70) and its current root node is 50. We will split the leaf node of the tree in
the middle so that its balance is not altered. So we can group (50, 55) and (60, 65, 70) into 2 leaf nodes.

If these two has to be leaf nodes, the intermediate node cannot branch from 50. It should have 60 added to it, and then we can
have pointers to a new leaf node.

This is how we can insert an entry when there is overflow. In a normal scenario, it is very easy to find the node where it fits
and then place it in that leaf node.

B+ Tree Deletion
Suppose we want to delete 60 from the above example. In this case, we have to remove 60 from the intermediate node as well
as from the 4th leaf node too. If we remove it from the intermediate node, then the tree will not satisfy the rule of the B+ tree.
So we need to modify it to have a balanced tree.

After deleting node 60 from above B+ tree and re-arranging the nodes, it will show as follows:

Hashing
In a huge database structure, it is very inefficient to search all the index values and reach the desired data. Hashing technique
is used to calculate the direct location of a data record on the disk without using index structure.

In this technique, data is stored at the data blocks whose address is generated by using the hashing function. The memory
location where these records are stored is known as data bucket or data blocks.

In this, a hash function can choose any of the column value to generate the address. Most of the time, the hash function uses
the primary key to generate the address of the data block. A hash function is a simple mathematical function to any complex
mathematical function. We can even consider the primary key itself as the address of the data block. That means each row
whose address will be the same as a primary key stored in the data block.

The above diagram shows data block addresses same as primary key value. This hash function can also be a simple
mathematical function like exponential, mod, cos, sin, etc. Suppose we have mod (5) hash function to determine the address of
the data block. In this case, it applies mod (5) hash function on the primary keys and generates 3, 3, 1, 4 and 2 respectively,
and records are stored in those data block addresses.

Types of Hashing:

o Static Hashing

o Dynamic Hashing

What is Data Structure?

• Data structure is an arrangement of data in computer's memory. It makes the data quickly available to the

processor for required operations.

• It is a software artifact which allows data to be stored, organized and accessed.

• It is a structure program used to store ordered data, so that various operations can be performed on it easily.

For example, if we have an employee's data like name 'ABC' and salary 10000. Here, 'ABC' is of String data

type and 10000 is of Float data type.

We can organize this data as a record like Employee record and collect & store employee's records in a file or

database as a data structure like 'ABC' 10000, 'PQR' 15000, 'STU' 5000.

• Data structure is about providing data elements in terms of some relationship for better organization and

storage.

• It is a specialized format for organizing and storing data that can be accessed within appropriate ways.

Why is Data Structure important?

• Data structure is important because it is used in almost every program or software system.

• It helps to write efficient code, structures the code and solve problems.

• Data can be maintained more easily by encouraging a better design or implementation.

• Data structure is just a container for the data that is used to store, manipulate and arrange. It can be

processed by algorithms.

For example, while using a shopping website like Flipkart or Amazon, the users know their last orders and

can track them. The orders are stored in a database as records.

However, when the program needs them so that it can pass the data somewhere else (such as to a

warehouse) or display it to the user, it loads the data in some form of data structure.

Types of Data Structure

A. Primitive Data Type

• Primitive data types are the data types available in most of the programming languages.

• These data types are used to represent single value.

• It is a basic data type available in most of the programming language.

Data type Description

Integer Used to represent a number without decimal point.

Float Used to represent a number with decimal point.

Character Used to represent single character.

Boolean Used to represent logical values either true or false.

B. Non-Primitive Data Type

• Data type derived from primary data types are known as Non-Primitive data types.

• Non-Primitive data types are used to store group of values.
It can be divided into two types:

1. Linear Data Structure
2. Non-Linear Data Structure

1. Linear Data Structure

• Linear data structure traverses the data elements sequentially.

• In linear data structure, only one data element can directly be reached.

• It includes array, linked list, stack and queues.

Types Description

Arrays Array is a collection of elements. It is used in mathematical problems like matrix, algebra etc. each
element of an array is referenced by a subscripted variable or value, called subscript or index enclosed
in parenthesis.

Linked
list

Linked list is a collection of data elements. It consists of two parts: Info and Link. Info gives
information and Link is an address of next node. Linked list can be implemented by using pointers.

Stack Stack is a list of elements. In stack, an element may be inserted or deleted at one end which is known
as Top of the stack. It performs two operations: Push and Pop. Push means adding an element in
stack and Pop means removing an element in stack. It is also called Last-in-First-out (LIFO).

Queue Queue is a linear list of element. In queue, elements are added at one end called rear and the existing
elements are deleted from other end called front. It is also called as First-in-First-out (FIFO).

2. Non-Linear Data Structure

• Non-Linear data structure is opposite to linear data structure.

• In non-linear data structure, the data values are not arranged in order and a data item is connected to several

other data items.

• It uses memory efficiently. Free contiguous memory is not required for allocating data items.

• It includes trees and graphs.

Type Description

Tree Tree is a flexible, versatile and powerful non-linear data structure. It is used to represent data items
processing hierarchical relationship between the grandfather and his children & grandchildren. It is an
ideal data structure for representing hierarchical data.

Graph Graph is a non-linear data structure which consists of a finite set of ordered pairs called edges. Graph is
a set of elements connected by edges. Each elements are called a vertex and node.

Abstract Data type (ADT)

What is ADT?
• ADT stands for Abstract Data Type.
• It is an abstraction of a data structure.

• Abstract data type is a mathematical model of a data structure.

• It describes a container which holds a finite number of objects where the objects may be associated through a

given binary relationship.

• It is a logical description of how we view the data and the operations allowed without regard to how they will

be implemented.

• ADT concerns only with what the data is representing and not with how it will eventually be constructed.

• It is a set of objects and operations. For example, List, Insert, Delete, Search, Sort.
It consists of following three parts:

1. Data
2. Operation
3. Error

1. Data describes the structure of the data used in the ADT.

2. Operation describes valid operations for the ADT. It describes its interface.

3. Error describes how to deal with the errors that can occur.

Advantages of ADT

• ADT is reusable and ensures robust data structure.

• It reduces coding efforts.

• Encapsulation ensures that data cannot be corrupted.

• ADT is based on principles of Object Oriented Programming (OOP) and Software Engineering (SE).

• It specifies error conditions associated with operations.

Introduction of B+ Tree
In order, to implement dynamic multilevel indexing, B-tree and B+ tree are generally employed. The drawback of B-tree
used for indexing, however is that it stores the data pointer (a pointer to the disk file block containing the key value),
corresponding to a particular key value, along with that key value in the node of a B-tree. This technique, greatly reduces
the number of entries that can be packed into a node of a B-tree, thereby contributing to the increase in the number of
levels in the B-tree, hence increasing the search time of a record.
B+ tree eliminates the above drawback by storing data pointers only at the leaf nodes of the tree. Thus, the structure of
leaf nodes of a B+ tree is quite different from the structure of internal nodes of the B+ tree. It may be noted here that,
since data pointers are present only at the leaf nodes, the leaf nodes must necessarily store all the key values along with
their corresponding data pointers to the disk file block, in order to access them. Moreover, the leaf nodes are linked to
provide ordered access to the records. The leaf nodes, therefore form the first level of index, with the internal nodes
forming the other levels of a multilevel index. Some of the key values of the leaf nodes also appear in the internal nodes,
to simply act as a medium to control the searching of a record.

From the above discussion it is apparent that a B+ tree, unlike a B-tree has two orders, ‘a’ and ‘b’, one for the internal
nodes and the other for the external (or leaf) nodes.

The structure of the internal nodes of a B+ tree of order ‘a’ is as follows:
1. Each internal node is of the form :

<P1, K1, P2, K2, ….., Pc-1, Kc-1, Pc>
where c <= a and each Pi is a tree pointer (i.e points to another node of the tree) and, each Ki is a key value (see diagram-
I for reference).

2. Every internal node has : K1 < K2 < …. < Kc-1
3. For each search field values ‘X’ in the sub-tree pointed at by Pi, the following condition holds :

Ki-1 < X <= Ki, for 1 < i < c and,

Ki-1 < X, for i = c
(See diagram I for reference)

4. Each internal nodes has at most ‘a’ tree pointers.
5. The root node has, at least two tree pointers, while the other internal nodes have at least \ceil(a/2) tree pointers each.
6. If any internal node has ‘c’ pointers, c <= a, then it has 'c – 1' key values.

Diagram-I

The structure of the leaf nodes of a B+ tree of order ‘b’ is as follows:
1. Each leaf node is of the form :

<<K1, D1>, <K2, D2>, ….., <Kc-1, Dc-1>, Pnext>
where c <= b and each Di is a data pointer (i.e points to actual record in the disk whose key value is Ki or to a disk file
block containing that record) and, each Ki is a key value and, Pnext points to next leaf node in the B+ tree (see diagram II
for reference).

2. Every leaf node has : K1 < K2 < …. < Kc-1, c <= b
3. Each leaf node has at least \ceil(b/2) values.
4. All leaf nodes are at same level.

Diagram-II

Using the Pnext pointer it is viable to traverse all the leaf nodes, just like a linked list, thereby achieving ordered access to
the records stored in the disk.
A Diagram of B+ Tree –

Advantage –
A B+ tree with ‘l’ levels can store more entries in its internal nodes compared to a B-tree having the same ‘l’ levels. This
accentuates the significant improvement made to the search time for any given key. Having lesser levels and presence of
Pnext pointers imply that B+ tree are very quick and efficient in accessing records from disks.

BCAGE 203 (BDP)

UNIT-04

Programming Methodologies

Programming methodology deals with the analysis, design and implementation of programs.

When programs are developed to solve real-life problems like inventory management, payroll

processing, student admissions, examination result processing, etc. they tend to be huge and

complex. The approach to analyzing such complex problems, planning for software

development and controlling the development process is called programming methodology.

Types of Programming Methodologies

There are many types of programming methodologies prevalent among software developers

−

Procedural Programming

Problem is broken down into procedures, or blocks of code that perform one task each. All

procedures taken together form the whole program. It is suitable only for small programs that

have low level of complexity.

Example − For a calculator program that does addition, subtraction, multiplication, division,

square root and comparison, each of these operations can be developed as separate procedures.

In the main program each procedure would be invoked on the basis of user’s choice.

Object-oriented Programming

Here the solution revolves around entities or objects that are part of problem. The solution

deals with how to store data related to the entities, how the entities behave and how they

interact with each other to give a cohesive solution.

Example − If we have to develop a payroll management system, we will have entities like

employees, salary structure, leave rules, etc. around which the solution must be built.

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data of an object are ties together in the data

structure.

• Data is hidden and cannot be accessed by external function.

• Objects may communicate with each other through function.

• New data and functions can be easily added whenever necessary.

• Follows bottom up approach in program design.

Functional Programming

Here the problem, or the desired solution, is broken down into functional units. Each unit

performs its own task and is self-sufficient. These units are then stitched together to form the

complete solution.

Example − A payroll processing can have functional units like employee data maintenance,

basic salary calculation, gross salary calculation, leave processing, loan repayment processing,

etc.

Logical Programming

Here the problem is broken down into logical units rather than functional units. Example: In

a school management system, users have very defined roles like class teacher, subject teacher,

lab assistant, coordinator, academic in-charge, etc. So the software can be divided into units

depending on user roles. Each user can have different interface, permissions, etc.

Software developers may choose one or a combination of more than one of these

methodologies to develop a software. Note that in each of the methodologies discussed,

problem has to be broken down into smaller units. To do this, developers use any of the

following two approaches −

 Top-down approach

 Bottom-up approach

Top-down or Modular Approach

The problem is broken down into smaller units, which may be further broken down into even

smaller units. Each unit is called a module. Each module is a self-sufficient unit that has

everything necessary to perform its task.

The following illustration shows an example of how you can follow modular approach to

create different modules while developing a payroll processing program.

Bottom-up Approach

In bottom-up approach, system design starts with the lowest level of components, which are

then interconnected to get higher level components. This process continues till a hierarchy of

all system components is generated. However, in real-life scenario it is very difficult to know

all lowest level components at the outset. So bottoms up approach is used only for very simple

problems.

Let us look at the components of a calculator program.

Structured Programming

It is a programming style; and this style of programming is known by several names: Procedural

decomposition, Structured programming, etc. Structured programming is not programming

with structures but by using following types of code structures to write programs:

1. Sequence of sequentially executed statements

2. Conditional execution of statements (i.e., “if” statements)

3. Looping or iteration (i.e., “for, do...while, and while” statements)

4. Structured subroutine calls (i.e., functions)

In particular, the following language usage is forbidden:

• “GoTo” statements

• “Break” or “continue” out of the middle of loops

• Multiple exit points to a function/procedure/subroutine (i.e., multiple

“return” statements)

• Multiple entry points to a function/procedure/subroutine/method

In this style of programming there is a great risk that implementation details of many data

structures have to be shared between functions, and thus globally exposed. This in turn tempts

other functions to use these implementation details; thereby creating unwanted dependencies

between different parts of the program. The main disadvantage is that all decisions made from

the start of the project depend directly or indirectly on the high-level specification of the

application. It is a well known fact that this specification tends to change over a time. When

that happens, there is a great risk that large parts of the application need to be rewritten.

Advantages of structured programming

1. clarity: structured programming has a clarity and logical pattern to their control structure and

due to this tremendous increase in programming productivity

2. another key to structured programming is that each block of code has a single entry point

and single exit point.so we can break up long sequence of code into modules

3. Maintenance: the clarity and modularity inherent in structured programming is of great help

in finding an error and redesigning the required section of code.

Programming Principles: -

programming principles and using them in your code makes you a better developer. It

improves the quality of code and later adding other functionality or making changes in it

becomes easier for everyone. Let’s discuss some basic principles of programming and the

benefits of using it.

7 Common Programming Principles

1. KISS: Nobody in programming loves to debug, maintain, or make changes in complex

code. “Keep It Simple, Stupid (KISS)“ states that most systems work best if they are kept

simple rather than making it complex, so when you are writing code your solution should not

be complicated that takes a lot of time and effort to understand. If your code is simple then

other developers won’t face any problem understanding the code logic and they can easily

proceed further with your code. So always try to simplify your code using different

approaches like breaking a complex problem into smaller chunks or taking out some

unnecessary code you have written.

2. DRY: Duplication of data, logic, or function in code not only makes your code lengthy

but also wastes a lot of time when it comes to maintaining, debug or modify the code. If you

need to make a small change in your code then you need to do it at several places. “Don’t

Repeat Yourself (DRY)” principal goal is to reduce the repetition of code. It states that a

piece of code should be implemented in just one place in the source code. The opposite of

the DRY principle is WET (“write everything twice” or “waste everyone’s time”) which

breaks the DRY principle if you are writing the same logic at several places. You can create

a common function or abstract your code to avoid the repetition in your code.

3. YAGNI: Your software or program can become larger and complex if you are writing

some code which you may need in the future but not at the moment. “You Aren’t Gonna

Need It (YAGNI)” principle states that “don’t implement something until it is necessary”

because in most of the cases you are not going to use that piece of code in future. Most of the

programmers while implementing software think about the future possibility and add some

code or logic for some other features which they don’t need at present. They add all the

unnecessary class and functionality which they might never use in the future. Doing this is

completely wrong and you will eventually end up in writing bloated code also your project

becomes complicated and difficult to maintain. We recommend all the programmers to avoid

this mistake to save a lot of time and effort.

4. SOLID: The SOLID principle stands for five principles which are Single responsibility,

Open-closed, Liskov substitution, Interface Segregation, and Dependency inversion. These

principles are given by Robert C. Martin and you can check about these SOLID Principle in

detail.

5. Separation of Concerns (SoC): Separation of Concerns Principle partition a complicated

application into different sections or domains. Each section or domain addresses a separate

concern or has a specific job. Each section is independent of each other and that’s why each

section can be tackled independently also it becomes easier to maintain, update, and reuse

the code.

For example business logic (the content of the webpage) in an application is a different

concern and user interface is a different concern in a web application program. One of the

good examples of SoC is the MVC pattern where data (“model”), the logic (“controller”),

and what the end-user sees (“view”) divided into three different sections and each part is

handled independently. Saving of data to a database has nothing to do with rendering the data

on the web.

6. Avoid Premature Optimization: Optimization indeed helps in speeding up the program

or algorithm but according to this principle you don’t need to optimize your algorithm at an

early stage of development. If you do premature optimization you won’t be able to know

where a program’s bottlenecks will be and maintenance will become harder for you. If you

optimize your code in the beginning and case if the requirement may change than your efforts

will be wasted and your code will go to the garbage. So it’s better to optimize the algorithm

at the right time to get the right benefit of it.

7. Law of Demeter: This principle was first introduced by Ian Holland in 1987 at

Northeastern University. It is also known as the principle of least knowledge. This principle

divides the responsibility between classes or different units and it can be summarized in three

points.

 Each unit should have only limited knowledge about other units: only units

“closely” related to the current unit.

 Each unit should only talk to its friends; don’t talk to strangers.

 Only talk to your immediate friends.

The Law of Demeter helps in maintaining independent classes and makes your code

less coupled which is very important in software development to make your application

flexible, stable, maintainable and understandable.

Coding Style Programmers spend an enormous amount of time reading and studying

code when they are writing, testing, and debugging their programs. Using

good programming style allows this process to proceed much more easily.

When writing a program using iterative-enhancement, it is an excellent

idea to beautify your code at the end of each enhancement, before

proceding to the next one; each enhancement should be the best thatit can

be, before continuing. Ultimately, this strategy will save you time

compared to the strategy often used by students: ignore style until the

program is completely written. This is a penny-wise, pound-foolish

https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

strategy. It is much harder to "finish" a poorly-styled program, because it

is harder to read and understand it; (software) engineers must learn to

practice techniques that overcome human nature; this is one example.

In the real world, companies have their own style guidelines, which all

their programmers must follow (see Vermuelen's book). In this way, code

written by different programmers is consistent (and therefore more easily

readable by other programmers). So, it is not unreasonable for me to ask

you to write in a certain style, as consistently as you can.

We will use four general principles to discuss issues in programming style

(backwards, they are the acronym CLAN).

 Names

 Alignment

 Locality

 Comments

Good Names Programmers get to choose identifiers that name variables (and as we will

see later in this course methods, parameters, classes, exceptions, etc). We

should choose descriptive names. Yes, we should also try to choose short

names, but descriptiveness is more important. A long descriptive name is

better than a short unclear one. Of course, a short descriptive name is

optimal.

Beginning programmers typically choose names that are too short: they

abbreviate too much, or use just single letter names. Rather than declaring

int qs; //qs means quarters

declare a variable named quarters (and then, if necessary, comment on

some other aspect of the name -like its units). Using longer names requires

a bit more typing (which costs some time) and takes longer to read (ditto)

but it makes it much easier for you to understand your program as you

are enhancing/debugging it (which saves much much much more time).

Examine the names that I use in my sample and solution programs and

mimic them.

So far, we have learned the fllowing Java naming conventions.

 Names of Variable start with lower-case letters, and use upper-

case letters at the start of each word in the name ("camel-style"):

e.g., dartsInCircle.

 Names of classes start with upper-case letters,and use use other

upper-case letters at the start of each word in the name:

e.g., StringTokenizer.

 Names of public static final fields are written in all upper-case,

and use underscores to separate each word in the name:

e.g., SPEED_OF_LIGHT.

Alignment

(indenting)

Generally, we use whitespace to present our programs (to humans, not

computers) in an easy to read and understand form. Remember that adding

extra whitespace doesn't affect the meaning of our programs (the sequence

of tokens is still the same), but it does affect how a program is displayed

in the editor while we are reading it.

Using extra whitespace will make the program "longer" but easier to read.

In fact, in one early style of written English (scriptio continua), words were

strung together with no intervening whitespace.

Itwasstillreadablebutveryslowanddifficulttocomprehend. Sometimes

smaller isn't simler.

Alignment involves mostly using horizontal whitespace. The most

important use of alignment is showing which statements are controlled by

which control structures, with the controlled statements indented to

appear inside the statements that control them. This relationship is the

essence of using control structures, so highlighting it is critical.

There is a pattern in how we write control structures. For example in the

block after main(), all statements are indented at the same level.

 {

 statement1

 statement2

 ...

 statementn

 }
A typical indentation for these statements (and others inside control

structures, illustrated below) is 2-4 spaces: one space is too little and more

than four is too much (the Goldilocks principle again). In fact, the indent

icons in the editor (red left-arrow followed by text or red right-arrow

followed by text) make it easy to select multiple lines of text and indent

(or outdent) them 2 spaces at a time.

Likewise, in an if statement we use the following forms (depending on

whether or not the statement contolled by the if is a block)

 if (test)

 statementT

 if (test) {

 statementT1

 statementT2

 ...

 statementTn

 }
For an if/else statement, there are four possiblities (based on the absence

or presense of blocks). From simplest to most complicated, they are:

 if (test)

 statementT

 else

 statementF

 if (test)

 statementT

 else{

 statementF1

 ...

 statementFn

 }

 if (test) {

 statementT1

 ...

 statementTn

 }else

 statementF

 if (test) {

 statementT1

 ...

 statementTn

 }else{

 statementF1

 ...

 statementFn

 }

I like to write }else{ on the same line, but Vermeulen likes to write

 }

 else{

Many programmers adopt a style that ALWAYS use blocks

in if statements (and loops), even if they contain just ONE statement. On

the positive side, such an approach makes it very easy to add/remove

statements (when debugging/enhancing programs), because the block is

already there; otherwise going from one to more statements requires

adding a block, and going from multiple to one statement requires

removing the block. On the negative side, blocks, when they are

unneccessary, make the program a harder to read. So, choose whichever of

these options you think is better, but be consistent with your choice. I like

"blocks where necessary" but Vermeulen likes "always blocks".

Finally, identically to if statements, we align a for loop by indenting the

statement that is their body.

 for (;;)

 statement

 for (;;) {

 statement1

 statement2

 ...

 statementn

 }

Almost all interesting loops use a block for their bodies. Exceptions are

very simple loops and loops that have one try-catch statement in their

bodies; such a statement has most of its code in a try block.

I cannot overemphasize how important it is to use proper alignment in

control structures. A major source of programming errors for beginners is

not understanding which statements are controlled by which control

structures: these can get tricky with expression statements

inside if statements inside loops. Proper alignment makes such

relationships much simpler to see. I have seen students spend 2 hours

trying to debug a program; at which point then finally spend 10 minutes

aligning its statements (because I refuse to help them until they do), and

then they solve their problem by themselves in 1 minute. If you expect to

debug your programs, it is imperative that you use proper alignment

whenever you add/remove code to/from them.

Another use of alignment occurs when declaring a sequence of variables;

rather than doing so haphazardly, we can align the types, names, initial

values, and comments.

 int game = 0; //Current game being played

 int maxGames = 10; //Limit on games for one customer

 int winCount = 0; //For statistics (see WL_Ratio too)

 int loseCount = 0;

 double winLoseRatio; //Calculated at the end of a session

Some programmers think that this kind of alignment is too much trouble,

because if you add/remove declarations, you must realign them; I think the

effort is worth it. So please examine all the alignment that I use in my

sample and solution programs and mimic them.

Locality

(paragraphing)

Locality is the most subjective of the style rules. It involves mostly adding

extra vertical whitespace (blank lines). By grouping statements together

and then placing blank lines between groups, we create the programming

equivalent of paragraphs in prose writing (where each paragraph contains

related sentences). In a written paper, students would never put all the

sentences into one long paragraph; likewise, students would never make

every sentence into its own paragraph. So, we should always use a more

reasonable grouping (some number of related lines) for paragraphing in

our programs.

Typically, each code group should contain a half-dozen statements. The

magic number 7+/-2 is also used for psychological reasons: it represents

the number of items typically usable in the brain's short-term memory.

Whenever a large number of statements appear in a block of code, use

blank lines to group them into a smaller number of related sequences. We

can write a preface comment (see below) that acts as a topic sentence for

the paragraph of code.

A for loop and try-catch almost always start their own group; so do

complicated if statements. Locality is more art than rules; I encourage you

to examine the groupings that I use in my sample and solution programs

and try to critique and ultimately emulate them.

Comments We document our programs with comments. While we try to express

ourselves as well as we can with Java code, there is always other useful

information about a program that we would like communicate to

programmers reading our code (including ourself, while debugging it, or

at some future date when we are enhancing our code). Such information is

for programmers, not the computer: not the instructions saying HOW the

code works (that is for the programmer and computer), but WHAT the

program does and WHY it does it (that way). We supply this information

in comments.

There are a few different categories of comments that frequently reappear.

 Preface comments act as a topic-sentence, describing a group of

related statements that directly follow the comment. Use the

locality principle with such comments: there should be more blank

lines separating the comment from the code before it (which it

doesn't describe) than blank lines separating the comment from the

code after it (which it does describe). Taken together, and indented

appropriately, these commments provide an outline of the program.

Every loop should have a preface comment; for other statements,

comment them as necessary.

 Sidebar comments appear on the same line, after some statement.

They help explain that statement; sometimes a series of sidebar

comments will also help outline the computation. Use alignment so

that all the sidebar comments are aligned: that makes it very easy

to have the code separated from the comments (more use of the

locality rule).

 "Sandwhich comments" directly preface and suffix some statement

(with no blank lines lines. Use a sandwhich comment to make

the if/break; statements terminating a long loop easy to locate.

 //////////////////////

 if (index == maxIndex)

 break;

 //////////////////////

 Avoid mingling comments within code; separate them for clarity.

In the following example use the FORMER side-bar comment, not

the latter, code.

 d = v*t; //distance = velocity times time

 d /*distance*/ = v /*velocity*/ * t /*time*/;

Like the other rules of good style, comments are best included while the

program is being written, not after it is working. I find and correct many

errors while writing comments, because I am focusing on the code while

writing about it. Again, many students approach writing comments as

something to do AFTER the program is complete, which ultimately slows

them down. Examine the comments that I use in my sample and solution

programs and try to critique and ultimately emulate them.

Miscellaneous

Style Rules

Finally, here are some miscellaneous style rules

 Use local variables whenever they clarify the code, keeping

expression sizes managable; use the goldilocks principle

 Don't reuse variable names for more than one purpose.

 Choose the types for variables carefully. If a variable stores only

integral values, declare it to be an int; use explicit conversion if

you need to use it as a double in some expression(s).

 Initialize variables when they are declared; but don't initialize them

at all if the next use of the variable is to store something into it.

 Use about 80 characters per line; remember that a carriage return is

whitespace, so don't write huge lines of code.

 Good style is cumulative: each style improvement may marginally

improve a program; but many can dramatically improve it.

Write code to be easily readable and understandable. Don't obfuscate code

because you think it will make the code run faster. Compilers do amazing

optimizations.

DBMS Concept:-

A database management system (DBMS) is a software package designed to define, manipulate,

retrieve and manage data in a database. A DBMS generally manipulates the data itself, the data

format, field names, record structure and file structure. It also defines rules to validate and

manipulate this data.

Database management systems are set up on specific data handling concepts, as the practice of

administrating a database evolves. The earliest databases only handled individual single pieces

of specially formatted data. Today’s more evolved systems can handle different kinds of less

formatted data and tie them together in more elaborate ways.

Database Management System or DBMS in short refers to the technology of storing and

retrieving usersí data with utmost efficiency along with appropriate security measures. This

tutorial explains the basics of DBMS such as its architecture, data models, data schemas, data

independence, E-R model, relation model, relational database design, and storage and file

structure and much more.

Why to Learn DBMS?

Traditionally, data was organized in file formats. DBMS was a new concept then, and all the

research was done to make it overcome the deficiencies in traditional style of data

management. A modern DBMS has the following characteristics −

 Real-world entity − A modern DBMS is more realistic and uses real-world entities to

design its architecture. It uses the behavior and attributes too. For example, a school

database may use students as an entity and their age as an attribute.

 Relation-based tables − DBMS allows entities and relations among them to form

tables. A user can understand the architecture of a database just by looking at the table

names.

 Isolation of data and application − A database system is entirely different than its

data. A database is an active entity, whereas data is said to be passive, on which the

database works and organizes. DBMS also stores metadata, which is data about data,

to ease its own process.

 Less redundancy − DBMS follows the rules of normalization, which splits a relation

when any of its attributes is having redundancy in values. Normalization is a

mathematically rich and scientific process that reduces data redundancy.

 Consistency − Consistency is a state where every relation in a database remains

consistent. There exist methods and techniques, which can detect attempt of leaving

database in inconsistent state. A DBMS can provide greater consistency as compared

to earlier forms of data storing applications like file-processing systems.

 Query Language − DBMS is equipped with query language, which makes it more

efficient to retrieve and manipulate data. A user can apply as many and as different

filtering options as required to retrieve a set of data. Traditionally it was not possible

where file-processing system was used.

Applications of DBMS

Database is a collection of related data and data is a collection of facts and figures that can

be processed to produce information.

Mostly data represents recordable facts. Data aids in producing information, which is based

on facts. For example, if we have data about marks obtained by all students, we can then

conclude about toppers and average marks.

A database management system stores data in such a way that it becomes easier to retrieve,

manipulate, and produce information. Following are the important characteristics and

applications of DBMS.

 ACID Properties − DBMS follows the concepts of Atomicity, Consistency, Isolation,

and Durability (normally shortened as ACID). These concepts are applied on

transactions, which manipulate data in a database. ACID properties help the database

stay healthy in multi-transactional environments and in case of failure.

 Multiuser and Concurrent Access − DBMS supports multi-user environment and

allows them to access and manipulate data in parallel. Though there are restrictions on

transactions when users attempt to handle the same data item, but users are always

unaware of them.

 Multiple views − DBMS offers multiple views for different users. A user who is in the

Sales department will have a different view of database than a person working in the

Production department. This feature enables the users to have a concentrate view of

the database according to their requirements.

 Security − Features like multiple views offer security to some extent where users are

unable to access data of other users and departments. DBMS offers methods to impose

constraints while entering data into the database and retrieving the same at a later stage.

DBMS offers many different levels of security features, which enables multiple users

to have different views with different features. For example, a user in the Sales

department cannot see the data that belongs to the Purchase department. Additionally,

it can also be managed how much data of the Sales department should be displayed to

the user. Since a DBMS is not saved on the disk as traditional file systems, it is very

hard for miscreants to break the code

What is a Relational Database (RDBMS)?

A relational database is a type of database that stores and provides access to data points that

are related to one another. Relational databases are based on the relational model, an intuitive,

straightforward way of representing data in tables. In a relational database, each row in the

table is a record with a unique ID called the key. The columns of the table hold attributes of

the data, and each record usually has a value for each attribute, making it easy to establish the

relationships among data points.

A relational database example:-

Here’s a simple example of two tables a small business might use to process orders for its

products. The first table is a customer info table, so each record includes a customer’s name,

address, shipping and billing information, phone number, and other contact information. Each

bit of information (each attribute) is in its own column, and the database assigns a unique ID

(a key) to each row. In the second table—a customer order table—each record includes the ID

of the customer that placed the order, the product ordered, the quantity, the selected size and

color, and so on—but not the customer’s name or contact information.

These two tables have only one thing in common: the ID column (the key). But because of that

common column, the relational database can create a relationship between the two tables. Then,

when the company’s order processing application submits an order to the database, the database

can go to the customer order table, pull the correct information about the product order, and

use the customer ID from that table to look up the customer’s billing and shipping information

in the customer info table. The warehouse can then pull the correct product, the customer can

receive timely delivery of the order, and the company can get paid.

Differences Between RDBMS and DBMS

There are some contrasting differences between RDBMS vs. DBMS. An RDBMS is an

advanced version of a DBMS. Unlike a DBMS that manages databases on a computer network

and hard disks, an RDBMS database helps maintain relationships between its tables.

https://www.oracle.com/in/database/what-is-database/

Here are some of the main differences between an RDBMS and a DBMS:

 Number of operators: A DBMS allows only a single operator simultaneously,

whereas multiple users can operate an RDBMS concurrently. An RDBMS uses intricate

algorithms that enable several users to access the database while preserving data

integrity simultaneously, significantly reducing response time.

 Hardware and software need: A DBMS utilizes fewer data storage and retrieval

resources than an RDBMS. The latter is more complex due to its multi-table structure

and cross-referencing capability, making it costlier than a DBMS. RDBMSs are also

generally used for enterprise-class applications, while DBMSs are more commonly

utilized for smaller, purpose-specific applications.

 Data modification: Altering data in a DBMS is quite difficult, whereas you can easily

modify data in an RDBMS using an SQL query. Thus, programmers can change/access

multiple data elements simultaneously. This is one of the reasons why an RDBMS is

more efficient than a DBMS.

 Data volume: A DBMS is more suitable for handling low data volume, whereas an

RDBMS can handle even large data volumes.

 Keys and Indexes: A DBMS doesn’t involve keys and indexes, whereas an RDBMS

specifies a relationship between data elements via keys and indexes.

 Data consistency: As a DBMS does not follow the ACID (Atomicity, Consistency,

Isolation, and Durability) model, the data stored can have inconsistencies. In contrast,

an RDBMS follows the ACID model, making it structured and consistent.

 Database structure: A DBMS works by storing data in a hierarchical structure, while

an RDBMS stores data in tables.

 Data fetching speed: In a DBMS, the process is relatively slow, especially when data

is complex and extensive. This is because each of the data elements must be fetched

individually. In an RDBMS, data is fetched faster because of the relational approach.

Plus, SQL facilitates quicker data retrieval in an RDBMS.

 Distributed databases: A DBMS doesn’t support distributed databases, whereas an

RDBMS offers full support for distributed databases.

 Client-server architecture: Unlike a DBMS, an RDBMS supports client-server

architecture.

https://www.astera.com/by-use-case/hierarchical-data-integration/
https://www.astera.com/type/blog/rest-server-architecture-introduced-for-centerprise/
https://www.astera.com/type/blog/rest-server-architecture-introduced-for-centerprise/

BCAGE 203
Unit - 05

Data Models:-

Data Model gives us an idea that how the final system will look like after its complete

implementation. It defines the data elements and the relationships between the data

elements. Data Models are used to show how data is stored, connected, accessed and

updated in the database management system. Here, we use a set of symbols and text to

represent the information so that members of the organisation can communicate and

understand it. Though there are many data models being used nowadays but the Relational

model is the most widely used model. Apart from the Relational model, there are many

other types of data models about which we will study in details in this blog. Some of the

Data Models in DBMS are:

1. Hierarchical Model

2. Network Model

3. Entity-Relationship Model

4. Relational Model

5. Object-Oriented Data Model

6. Object-Relational Data Model

7. Flat Data Model

8. Semi-Structured Data Model

9. Associative Data Model

10. Context Data Model

1. Hierarchical Model

Hierarchical Model was the first DBMS model. This model organises the data in the

hierarchical tree structure. The hierarchy starts from the root which has root data and then

it expands in the form of a tree adding child node to the parent node. This model easily

represents some of the real-world relationships like food recipes, sitemap of a website

etc. Example: We can represent the relationship between the shoes present on a shopping

website in the following way:

Features of a Hierarchical Model

1. One-to-many relationship: The data here is organised in a tree-like structure

where the one-to-many relationship is between the datatypes. Also, there can be

only one path from parent to any node. Example: In the above example, if we want

to go to the node sneakers we only have one path to reach there i.e through men's

shoes node.

2. Parent-Child Relationship: Each child node has a parent node but a parent node

can have more than one child node. Multiple parents are not allowed.

3. Deletion Problem: If a parent node is deleted then the child node is automatically

deleted.

4. Pointers: Pointers are used to link the parent node with the child node and are used

to navigate between the stored data. Example: In the above example the 'shoes'

node points to the two other nodes 'women shoes' node and 'men's shoes' node.

Advantages of Hierarchical Model

 It is very simple and fast to traverse through a tree-like structure.

 Any change in the parent node is automatically reflected in the child node so, the

integrity of data is maintained.

Disadvantages of Hierarchical Model

 Complex relationships are not supported.

 As it does not support more than one parent of the child node so if we have some

complex relationship where a child node needs to have two parent node then that

can't be represented using this model.

 If a parent node is deleted then the child node is automatically deleted.

2. Network Model

This model is an extension of the hierarchical model. It was the most popular model before

the relational model. This model is the same as the hierarchical model, the only difference

is that a record can have more than one parent. It replaces the hierarchical tree with a

graph. Example: In the example below we can see that node student has two parents i.e.

CSE Department and Library. This was earlier not possible in the hierarchical model.

Features of a Network Model

1. Ability to Merge more Relationships: In this model, as there are more

relationships so data is more related. This model has the ability to manage one-

to-one relationships as well as many-to-many relationships.

2. Many paths: As there are more relationships so there can be more than one path

to the same record. This makes data access fast and simple.

3. Circular Linked List: The operations on the network model are done with the

help of the circular linked list. The current position is maintained with the help

of a program and this position navigates through the records according to the

relationship.

Advantages of Network Model

 The data can be accessed faster as compared to the hierarchical model. This is

because the data is more related in the network model and there can be more than

one path to reach a particular node. So the data can be accessed in many ways.

 As there is a parent-child relationship so data integrity is present. Any change in

parent record is reflected in the child record.

Disadvantages of Network Model

 As more and more relationships need to be handled the system might get complex.

So, a user must be having detailed knowledge of the model to work with the model.

 Any change like updation, deletion, insertion is very complex.

3. Entity-Relationship Model

Entity-Relationship Model or simply ER Model is a high-level data model diagram. In this

model, we represent the real-world problem in the pictorial form to make it easy for the

stakeholders to understand. It is also very easy for the developers to understand the system

by just looking at the ER diagram. We use the ER diagram as a visual tool to represent an

ER Model. ER diagram has the following three components:

 Entities: Entity is a real-world thing. It can be a person, place, or even a

concept. Example: Teachers, Students, Course, Building, Department, etc are some

of the entities of a School Management System.

 Attributes: An entity contains a real-world property called attribute. This is the

characteristics of that attribute. Example: The entity teacher has the property like

teacher id, salary, age, etc.

 Relationship: Relationship tells how two attributes are related. Example: Teacher

works for a department.

Example:

In the above diagram, the entities are Teacher and Department. The attributes

of Teacher entity are Teacher_Name, Teacher_id, Age, Salary, Mobile_Number. The

attributes of entity Department entity are Dept_id, Dept_name. The two entities are

connected using the relationship. Here, each teacher works for a department.

Features of ER Model

 Graphical Representation for Better Understanding: It is very easy and simple to

understand so it can be used by the developers to communicate with the

stakeholders.

 ER Diagram: ER diagram is used as a visual tool for representing the model.

 Database Design: This model helps the database designers to build the database

and is widely used in database design.

Advantages of ER Model

 Simple: Conceptually ER Model is very easy to build. If we know the relationship

between the attributes and the entities we can easily build the ER Diagram for the

model.

 Effective Communication Tool: This model is used widely by the database

designers for communicating their ideas.

 Easy Conversion to any Model: This model maps well to the relational model and

can be easily converted relational model by converting the ER model to the table.

This model can also be converted to any other model like network model,

hierarchical model etc.

Disadvatages of ER Model

 No industry standard for notation: There is no industry standard for developing an

ER model. So one developer might use notations which are not understood by other

developers.

 Hidden information: Some information might be lost or hidden in the ER model.

As it is a high-level view so there are chances that some details of information

might be hidden.

4. Relational Model

Relational Model is the most widely used model. In this model, the data is maintained in

the form of a two-dimensional table. All the information is stored in the form of row and

columns. The basic structure of a relational model is tables. So, the tables are also

called relations in the relational model. Example: In this example, we have an Employee

table.

Features of Relational Model

 Tuples: Each row in the table is called tuple. A row contains all the information

about any instance of the object. In the above example, each row has all the

information about any specific individual like the first row has information about

John.

 Attribute or field: Attributes are the property which defines the table or relation.

The values of the attribute should be from the same domain. In the above example,

we have different attributes of the employee like Salary, Mobile_no, etc.

Advantages of Relational Model

 Simple: This model is more simple as compared to the network and hierarchical

model.

 Scalable: This model can be easily scaled as we can add as many rows and

columns we want.

 Structural Independence: We can make changes in database structure without

changing the way to access the data. When we can make changes to the database

structure without affecting the capability to DBMS to access the data we can say

that structural independence has been achieved.

Disadvantages of Relational Model

 Hardware Overheads: For hiding the complexities and making things easier for

the user this model requires more powerful hardware computers and data storage

devices.

 Bad Design: As the relational model is very easy to design and use. So the users

don't need to know how the data is stored in order to access it. This ease of design

can lead to the development of a poor database which would slow down if the

database grows.

But all these disadvantages are minor as compared to the advantages of the relational

model. These problems can be avoided with the help of proper implementation and

organisation.

5. Object-Oriented Data Model

 The real-world problems are more closely represented through the object-oriented data

model. In this model, both the data and relationship are present in a single structure known

as an object. We can store audio, video, images, etc in the database which was not possible

in the relational model(although you can store audio and video in relational database, it is

adviced not to store in the relational database). In this model, two are more objects are

connected through links. We use this link to relate one object to other objects. This can be

understood by the example given below.

6. Object-Relational Model

As the name suggests it is a combination of both the relational model and the object-

oriented model. This model was built to fill the gap between object-oriented model and the

relational model. We can have many advanced features like we can make complex data

types according to our requirements using the existing data types. The problem with this

model is that this can get complex and difficult to handle. So, proper understanding of this

model is required.

7. Flat Data Model

It is a simple model in which the database is represented as a table consisting of rows and

columns. To access any data, the computer has to read the entire table. This makes the

modes slow and inefficient.

8. Semi-Structured Model

Semi-structured model is an evolved form of the relational model. We cannot differentiate

between data and schema in this model. Example: Web-Based data sources which we can't

differentiate between the schema and data of the website. In this model, some entities may

have missing attributes while others may have an extra attribute. This model gives

flexibility in storing the data. It also gives flexibility to the attributes. Example: If we are

storing any value in any attribute then that value can be either atomic value or a collection

of values.

9. Associative Data Model

Associative Data Model is a model in which the data is divided into two parts. Everything

which has independent existence is called as an entity and the relationship among these

entities are called association. The data divided into two parts are called items and links.

 Item: Items contain the name and the identifier(some numeric value).

 Links: Links contain the identifier, source, verb and subject.

Multidimensional model
This is a variation of the relational model designed to facilitate improved analytical
processing. While the relational model is optimized for online transaction processing
(OLTP), this model is designed for online analytical processing (OLAP).
Each cell in a dimensional database contains data about the dimensions tracked by the
database. Visually, it’s like a collection of cubes, rather than two-dimensional tables.

Semistructured model
In this model, the structural data usually contained in the database schema is embedded with
the data itself. Here the distinction between data and schema is vague at best. This model is
useful for describing systems, such as certain Web-based data sources, which we treat as
databases but cannot constrain with a schema. It’s also useful for describing interactions
between databases that don’t adhere to the same schema.

Context model
This model can incorporate elements from other database models as needed. It cobbles
together elements from object-oriented, semistructured, and network models.

Associative model
This model divides all the data points based on whether they describe an entity or an
association. In this model, an entity is anything that exists independently, whereas an
association is something that only exists in relation to something else.
The associative model structures the data into two sets:

 A set of items, each with a unique identifier, a name, and a type
 A set of links, each with a unique identifier and the unique identifiers of a source,

verb, and target. The stored fact has to do with the source, and each of the three
identifiers may refer either to a link or an item.

Other, less common database models include:
 Semantic model, which includes information about how the stored data relates to the

real world
 XML database, which allows data to be specified and even stored in XML format
 Named graph
 Triplestore

NoSQL database models

In addition to the object database model, other non-SQL models have emerged in contrast to
the relational model:
The graph database model, which is even more flexible than a network model, allowing any
node to connect with any other.
The multivalue model, which breaks from the relational model by allowing attributes to
contain a list of data rather than a single data point.
The document model, which is designed for storing and managing documents or semi-
structured data, rather than atomic data.

1. RDBMS :
RDBMS stands for Relational Database Management System.
In this database management, the data is organized into the related tables. To access the
database it uses Structured Query Language (SQL). This model is based on the mathematical
theory of relational algebra and calculus. The original concept for the model is proposed by
Dr. E.F. Codd in a 1970. After some time the model was classified by defining twelve rules
which are known as Codd’s rule. For any database to be relational database it must satisfy
atleast 6 out of 12 Codd’s rules. These 12 Codd’s rule are as follows :

 Information Rule
 Guaranteed Access Rule
 Systematic Treatment Of Null Values
 Database Description Rule
 Comprehensive Data Sub-Language Rule
 View Updating Rule
 High Level Insert, Update and Delete
 Physical Data Independence
 Logical Data Independence
 Integrity Independence
 Distribution Independence
 Non Subversion Rule

2. ORDBMS :
ORDBMS stands for Object-Relational Database Management System.
It provides all the facilities of RDBMS with the additional support of object oriented
concepts. The concept of classes, objects and inheritance are supported in this database. It is
present in the ground level between the RDBMS and OODBMS. In this data can be
manipulated by using any query language. It is complex because it has to take care of both
Relational database concepts and as well as Object Oriented concepts. Some of the object
related DBMS available in the market are as follows :

 IBM’S DB2 Universal Database system
 Informix’s Universal server

Difference between RDBMS and ORDBMS :

S.No
. RDBMS ORDBMS

1. RDBMS is a Relational Database ORDBMS is a Object Oriented Relational

https://practice.geeksforgeeks.org/problems/what-you-mean-by-object-relational-dbms
https://www.geeksforgeeks.org/structured-query-language/
https://www.geeksforgeeks.org/rdbms-full-form/

S.No
. RDBMS ORDBMS

Management System based on the
Relational model of data.

Database Management System based on the
Relational as well as Object Oriented database
model.

2.
It follows table structure, it is simple
to use and easy to understand.

It is same as RDBMS but it has some extra
confusing extensions because of the Object
Oriented concepts.

3. It has no extensibility and content. It is only limited to the new data-types.

4.
Since RDBMS is old so, it is very
mature. It is developing so it is immature in nature.

5.
In this, there is extensive supply of
tools and trained developers.

It can take the advances of RDBMS tools and
developers.

6.
It has poor support for Object-
Oriented programming.

It supports the features of object-oriented
programming.

7.
It supports Structured Query
Language (SQL). It supports Object Query Language (OQL).

8.

RDMS is used for traditional
applications tasks such as data
administration and data processing.

ORDMS is used for applications with complex
objects.

9.
It is capable of handling only simple
data. It is also capable of handling the complex data.

10
MS SQL server, MySQL, SQLite,
MariaDB are examples of RDBMS. PostgreSQL is an example of ORDBMS.

The SQL CREATE DATABASE statement is used to create a new SQL database.

Syntax

The basic syntax of this CREATE DATABASE statement is as follows −

CREATE DATABASE DatabaseName;

Always the database name should be unique within the RDBMS.

Example

If you want to create a new database <testDB>, then the CREATE DATABASE statement
would be as shown below −

SQL> CREATE DATABASE testDB;

Make sure you have the admin privilege before creating any database. Once a database is
created, you can check it in the list of databases as follows −

SQL> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| AMROOD |
| TUTORIALSPOINT |
| mysql |
| orig |
| test |
| testDB |
+--------------------+
7 rows in set (0.00 sec)

Creating a basic table involves naming the table and defining its columns and each column's
data type.

The SQL CREATE TABLE statement is used to create a new table.

Syntax

The basic syntax of the CREATE TABLE statement is as follows −

CREATE TABLE table_name(
 column1 datatype,
 column2 datatype,
 column3 datatype,

 columnN datatype,
 PRIMARY KEY(one or more columns)
);

CREATE TABLE is the keyword telling the database system what you want to do. In this
case, you want to create a new table. The unique name or identifier for the table follows the
CREATE TABLE statement.

Then in brackets comes the list defining each column in the table and what sort of data type
it is. The syntax becomes clearer with the following example.

A copy of an existing table can be created using a combination of the CREATE TABLE
statement and the SELECT statement. You can check the complete details at Create Table
Using another Table.

Example

The following code block is an example, which creates a CUSTOMERS table with an ID as
a primary key and NOT NULL are the constraints showing that these fields cannot be NULL
while creating records in this table −

SQL> CREATE TABLE CUSTOMERS(
 ID INT NOT NULL,
 NAME VARCHAR (20) NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR (25) ,
 SALARY DECIMAL (18, 2),
 PRIMARY KEY (ID)
);

You can verify if your table has been created successfully by looking at the message
displayed by the SQL server, otherwise you can use the DESC command as follows −

SQL> DESC CUSTOMERS;
+---------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------------+------+-----+---------+-------+
ID	int(11)	NO	PRI		
NAME	varchar(20)	NO			
AGE	int(11)	NO			
ADDRESS	char(25)	YES		NULL	
SALARY	decimal(18,2)	YES		NULL	
+---------+---------------+------+-----+---------+-------+
5 rows in set (0.00 sec)

Now, you have CUSTOMERS table available in your database which you can use to store
the required information related to customers.

The SQL INSERT INTO Statement is used to add new rows of data to a table in the
database.

Syntax

There are two basic syntaxes of the INSERT INTO statement which are shown below.

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)
VALUES (value1, value2, value3,...valueN);

Here, column1, column2, column3,...columnN are the names of the columns in the table into
which you want to insert the data.

You may not need to specify the column(s) name in the SQL query if you are adding values
for all the columns of the table. But make sure the order of the values is in the same order as
the columns in the table.

https://www.tutorialspoint.com/sql/sql-create-table-using-tables.htm
https://www.tutorialspoint.com/sql/sql-create-table-using-tables.htm

The SQL INSERT INTO syntax will be as follows −

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);

Example

The following statements would create six records in the CUSTOMERS table.

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (6, 'Komal', 22, 'MP', 4500.00);

You can create a record in the CUSTOMERS table by using the second syntax as shown
below.

INSERT INTO CUSTOMERS
VALUES (7, 'Muffy', 24, 'Indore', 10000.00);

All the above statements would produce the following records in the CUSTOMERS table as
shown below.

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Populate one table using another table

You can populate the data into a table through the select statement over another table;
provided the other table has a set of fields, which are required to populate the first table.

Here is the syntax −

INSERT INTO first_table_name [(column1, column2, ... columnN)]
 SELECT column1, column2, ...columnN
 FROM second_table_name
 [WHERE condition];

A view is nothing more than a SQL statement that is stored in the database with an
associated name. A view is actually a composition of a table in the form of a predefined
SQL query.

A view can contain all rows of a table or select rows from a table. A view can be created
from one or many tables which depends on the written SQL query to create a view.

Views, which are a type of virtual tables allow users to do the following −

 Structure data in a way that users or classes of users find natural or intuitive.
 Restrict access to the data in such a way that a user can see and (sometimes) modify

exactly what they need and no more.
 Summarize data from various tables which can be used to generate reports.

Creating Views

Database views are created using the CREATE VIEW statement. Views can be created
from a single table, multiple tables or another view.

To create a view, a user must have the appropriate system privilege according to the specific
implementation.

The basic CREATE VIEW syntax is as follows −

CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE [condition];

You can include multiple tables in your SELECT statement in a similar way as you use them
in a normal SQL SELECT query.

Example

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00

+----+----------+-----+-----------+----------+

Following is an example to create a view from the CUSTOMERS table. This view would be
used to have customer name and age from the CUSTOMERS table.

SQL > CREATE VIEW CUSTOMERS_VIEW AS
SELECT name, age
FROM CUSTOMERS;

Now, you can query CUSTOMERS_VIEW in a similar way as you query an actual table.
Following is an example for the same.

SQL > SELECT * FROM CUSTOMERS_VIEW;

This would produce the following result.

+----------+-----+
| name | age |
+----------+-----+
Ramesh	32
Khilan	25
kaushik	23
Chaitali	25
Hardik	27
Komal	22
Muffy	24
+----------+-----+

The WITH CHECK OPTION

The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the
WITH CHECK OPTION is to ensure that all UPDATE and INSERTs satisfy the
condition(s) in the view definition.

If they do not satisfy the condition(s), the UPDATE or INSERT returns an error.

The following code block has an example of creating same view CUSTOMERS_VIEW with
the WITH CHECK OPTION.

CREATE VIEW CUSTOMERS_VIEW AS
SELECT name, age
FROM CUSTOMERS
WHERE age IS NOT NULL
WITH CHECK OPTION;

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the
view's AGE column, because the view is defined by data that does not have a NULL value
in the AGE column.

Updating a View

A view can be updated under certain conditions which are given below −

 The SELECT clause may not contain the keyword DISTINCT.

 The SELECT clause may not contain summary functions.
 The SELECT clause may not contain set functions.
 The SELECT clause may not contain set operators.
 The SELECT clause may not contain an ORDER BY clause.
 The FROM clause may not contain multiple tables.
 The WHERE clause may not contain subqueries.
 The query may not contain GROUP BY or HAVING.
 Calculated columns may not be updated.
 All NOT NULL columns from the base table must be included in the view in order

for the INSERT query to function.

So, if a view satisfies all the above-mentioned rules then you can update that view. The
following code block has an example to update the age of Ramesh.

SQL > UPDATE CUSTOMERS_VIEW
 SET AGE = 35
 WHERE name = 'Ramesh';

This would ultimately update the base table CUSTOMERS and the same would reflect in
the view itself. Now, try to query the base table and the SELECT statement would produce
the following result.

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Inserting Rows into a View

Rows of data can be inserted into a view. The same rules that apply to the UPDATE
command also apply to the INSERT command.

Here, we cannot insert rows in the CUSTOMERS_VIEW because we have not included all
the NOT NULL columns in this view, otherwise you can insert rows in a view in a similar
way as you insert them in a table.

Deleting Rows into a View

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and
INSERT commands apply to the DELETE command.

Following is an example to delete a record having AGE = 22.

SQL > DELETE FROM CUSTOMERS_VIEW
 WHERE age = 22;

This would ultimately delete a row from the base table CUSTOMERS and the same would
reflect in the view itself. Now, try to query the base table and the SELECT statement would
produce the following result.

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

Dropping Views

Obviously, where you have a view, you need a way to drop the view if it is no longer
needed. The syntax is very simple and is given below −

DROP VIEW view_name;

Following is an example to drop the CUSTOMERS_VIEW from the CUSTOMERS table.

DROP VIEW CUSTOMERS_VIEW;

Normalization
o Normalization is the process of organizing the data in the database.
o Normalization is used to minimize the redundancy from a relation or set of relations.

It is also used to eliminate the undesirable characteristics like Insertion, Update and
Deletion Anomalies.

o Normalization divides the larger table into the smaller table and links them using
relationship.

o The normal form is used to reduce redundancy from the database table.

Types of Normal Forms

There are the four types of normal forms:

Normal Form Description

1NF A relation is in 1NF if it contains an atomic (single) value.

2NF The table should be in the 1NF.

 There should be no Partial Dependency.

3NF The table should be in the 2NF.

 There should be no transitive Dependency.

BCNF

(3.5NF)

 It should be in the 3NF.

 And, for any dependency A → B, A should be a super key.

First Normal Form

o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only

single-valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute

EMP_PHONE.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 Mohan 7272826385,

9064738238

UP

20 Harish 8574783832 Bihar

12 Shyam 7390372389,

8589830302

Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 Mohan 7272826385 UP

14 Mohan 9064738238 UP

20 Harish 8574783832 Bihar

12 Shyam 7390372389 Punjab

12 Shyam 8589830302 Punjab

Second Normal Form (2NF)

o In the 2NF, relational must be in 1NF.

o In the second normal form, there should be no Partial Dependency. All non-key

attributes should be fully functional dependent on the primary key

If we follow second normal form, then every non-prime attribute should be fully

functionally dependent on prime key attribute. That is, if X → A holds, then there should

not be any proper subset Y of X, for which Y → A also holds true.

We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID.

According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent

upon both and not on any of the prime key attribute individually. But we find that Stu_Name

can be identified by Stu_ID and Proj_Name can be identified by Proj_ID independently. This

is called partial dependency, which is not allowed in Second Normal Form.

We broke the relation in two as depicted in the above picture. So there exists no partial

dependency.

Third Normal Form (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial

dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must be

in third normal form.

We find that in the above Student_detail relation, Stu_ID is the key and only prime key

attribute. We find that Zip can be identified by Stu_ID and as well as city can be identified

by Zip itself. Neither Zip is a superkey nor is City a prime attribute. Additionally, Stu_ID →

Zip → City, so there exists transitive dependency.

To bring this relation into third normal form, we break the relation into two relations as

follows-

Boyce Codd normal form (BCNF) (3.5NF)

BCNF stands for Boyce-Codd normal form and was made by R.F Boyce and E.F Codd in

1947. BCNF is the advance version of 3NF. It is stricter than 3NF.A functional dependency is

said to be in BCNF if these properties hold:

 It should already be in 3NF.

 For a functional dependency say P→ Q, P should be a super key.

Example:

Below we have a college enrolment table with columns student_id, subject and professor.

As we can see, we have also added some sample data to the table.

student_id student_name Subject Professor

101 Ram Java P.Java1

101 Ram C++ P.Cpp

102 Mohan Java P.Java2

103 Suresh C# P.Chash

104 Hitesh Java P.Java

In the table above:

 One student can enrol for multiple subjects. For example, student

with student_id 101 student_name Ram, has opted for subjects - Java & C++

 For each subject, a professor is assigned to the student.

 And, there can be multiple professors teaching one subject like we have for Java.

One more important point to note here is, one professor teaches only one subject, but one

subject may have two different professors.

Hence, there is a dependency between subject and professor here,

where subject depends on the professor name.

This table satisfies the 1st Normal form because all the values are atomic, column names are

unique and all the values stored in a particular column are of same domain.

This table also satisfies the 2nd Normal Form as there is no Partial Dependency.

And, there is no Transitive Dependency, hence the table also satisfies the 3rd Normal

Form.

But this table is not in Boyce-Codd Normal Form.

Normalization
Apply the so-called normalization rules to check whether your database is structurally correct
and optimal.
First Normal Form (1NF): A table is 1NF if every cell contains a single value, not a list of
values. This properties is known as atomic. 1NF also prohibits repeating group of columns
such as item1, item2,.., itemN. Instead, you should create another table using one-to-many
relationship.

Second Normal Form (2NF): A table is 2NF, if it is 1NF and every non-key column is fully
dependent on the primary key. Furthermore, if the primary key is made up of several
columns, every non-key column shall depend on the entire set and not part of it.
For example, the primary key of the OrderDetails table comprising orderID and productID.
If unitPrice is dependent only on productID, it shall not be kept in the OrderDetails table (but
in the Products table). On the other hand, if the unitPrice is dependent on the product as well
as the particular order, then it shall be kept in the OrderDetails table.
Third Normal Form (3NF): A table is 3NF, if it is 2NF and the non-key columns are
independent of each others. In other words, the non-key columns are dependent on primary
key, only on the primary key and nothing else. For example, suppose that we have
a Products table with columns productID (primary key), name and unitPrice. The
column discountRate shall not belong to Products table if it is also dependent on
the unitPrice, which is not part of the primary key.
Higher Normal Form: 3NF has its inadequacies, which leads to higher Normal form, such
as Boyce/Codd Normal form, Fourth Normal Form (4NF) and Fifth Normal Form (5NF),
which is beyond the scope of this tutorial.
At times, you may decide to break some of the normalization rules, for performance reason
(e.g., create a column called totalPrice in Orders table which can be derived from
the orderDetails records); or because the end-user requested for it. Make sure that you fully
aware of it, develop programming logic to handle it, and properly document the decision.

	Data storage defined
	Data storage devices
	10 Digital Data Storage Devices for Computers

	1. Hard Disk Drives
	2. Floppy Disks
	3. Tapes
	4. Compact Discs (CDs)
	5. DVD and Blu-ray Discs
	6. USB Flash Drives
	7. Secure Digital Cards (SD Cards)
	8. Solid-State Drives (SSDs)
	9. Cloud Storage
	10. Punch Cards
	What Does Tape Cartridge Mean?
	6 Common Causes of Digital Data Loss
	Programming Methodologies
	Programming methodology deals with the analysis, design and implementation of programs.
	Types of Programming Methodologies
	Procedural Programming
	Object-oriented Programming
	Functional Programming
	Logical Programming

	Top-down or Modular Approach
	Bottom-up Approach

	Programming Principles: -
	7 Common Programming Principles
	Why to Learn DBMS?
	Applications of DBMS

	What is a Relational Database (RDBMS)?
	A relational database example:-
	Differences Between RDBMS and DBMS

	BCAGE 203
	Unit - 05
	Data Models:-
	1. Hierarchical Model
	2. Network Model
	3. Entity-Relationship Model
	4. Relational Model
	5. Object-Oriented Data Model
	6. Object-Relational Model
	7. Flat Data Model
	8. Semi-Structured Model
	9. Associative Data Model
	Multidimensional model
	Semistructured model
	Context model
	Associative model
	NoSQL database models
	Syntax
	Example
	Syntax
	Example
	Syntax
	Example

	Populate one table using another table
	Creating Views
	Example

	The WITH CHECK OPTION
	Updating a View
	Inserting Rows into a View
	Deleting Rows into a View
	Dropping Views

	Normalization
	Types of Normal Forms
	First Normal Form
	Second Normal Form (2NF)

	Third Normal Form (3NF)
	Boyce Codd normal form (BCNF) (3.5NF)
	Normalization

