

E-Content

IFTM University, Moradabad

MCACC-12

UNIT-1

OPERATING SYSTEM

The operating system is the most important program that runs on a computer. Every general

purpose computer must have an operating system to run other programs and applications.

Operating systems perform basic tasks, such as recognizing input from the keyboard, sending

output to the display screen, keeping track of files and directories on the disk, and controlling

peripheral devices such as disk drives and printers.

Definition:- An operating system is a system software which act as an interface between a user

and computer hardware. It provides an environment in which a user may execute programs. A

computer system can be divided in to four component.

Operating system as User Interface –

1. User

2. System and application programs

3. Operating system

4. Hardware

Every general-purpose computer consists of the hardware, operating system, system programs,

and application programs. The hardware consists of memory, CPU, ALU, and I/O devices,

peripheral device, and storage device. System program consists of compilers, loaders, editors,

OS, etc. The application program consists of business programs, database programs.

{

“Hardware Provides basic computing resources (CPU, memory, I/O devices).

Operating System- Controls and coordinates the use of hardware among application programs.

Application Programs- Solve computing problems of users (compilers, database systems, video

games, business programs such as banking software).

Users- People, machines, other computers”

}

Fig1: Conceptual view of a computer system

Every computer must have an operating system to run other programs. The operating system

coordinates the use of the hardware among the various system programs and application

programs for various users. It simply provides an environment within which other programs can

do useful work.

Goals of the Operating System:-

There are two types of goals of an Operating System i.e. Primary Goals and Secondary Goal.

• Primary Goal: The primary goal of an Operating System is to provide a user-friendly

and convenient environment. We know that it is not compulsory to use the Operating

System, but things become harder when the user has to perform all the process

scheduling and converting the user code into machine code is also very difficult. So,

we make the use of an Operating System to act as an intermediate between us and the

hardware. All you need to do is give commands to the Operating System and the

Operating System will do the rest for you. So, the Operating System should be

convenient to use.

• Secondary Goal: The secondary goal of an Operating System is efficiency. The

Operating System should perform all the management of resources in such a way that

the resources are fully utilized and no resource should be held idle if some request to

that resource is there at that instant of time.

So, in order to achieve the above primary and secondary goals, the Operating System

performs a number of functions.

Evolution of Operating System:-

Evolution -Evolution mean the gradual development of something.

Evolution of operating system is divided into 5 phases

PHASE 0: IN THE BEGINNING (1940-1955):-

Phase 0: No operating system

• Computers are exotic experimental equipment.

• Program in machine language.

• Use plug boards to direct computer.

• No overlap between computation, I/O, think time, and response time.

• Programs manually loaded via card decks.

Phase 1 (1955-1970):-

• Make more efficient use of the computer

• computer: move the person away from the machine.

• User at console: one user at a time

• Batch monitor: load program, run, print

• OS becomes a batch monitor: a program that loads a user’s

• If program failed, the OS record the contents of memory and saves it somewhere.

• Os/360 was introduced in 1963; worked in 1968.This Systems were enormously

complicated. They were written in assembly code. No structured programming.

MODIFICATIONS:

• More efficient use of hardware.

• Efficiency increases because it processes the jobs as a batch collectively rather than

individually.

Limitations

• No protection

• Difficult to debug!

Phase 2 (1970-1980):-

• Interactive timesharing: CTSS:

• Developed at MIT. One of the first timesharing systems. to let multiple users interact

with the system at the same time

• Sacrifice CPU time to get better response time

• Users do debugging, editing, and email online.

MODIFICATIONS:

• Better utilization of resources.

• More than one user executes their tasks simultaneously.

LIMITATIONS

• Thrashing- Thrashing caused by many Factors including

• Swapping

• Inefficient queuing

• Performance very non-linear response with load

Phase 3: 1980-1990:-

• OS becomes a subroutine library

• One application at a time (MSDOS, Required high level protection and privacy for

user data. First “mice”, “windows” Apple Lisa/ Macintosh: 1984 Xerox Star pp /

“Look and Feel” suit 1988 Microsoft Windows: Win 1.0 (1985) .

•

Phase 4: (1990-2000):-

Networked Systems:

• Networking (Local Area Networking)

• Different machines share resources Printers, File Servers, Web Servers Client – Server

Model Services: Computing File Storage

Modifications:

• Internet service providers (service between OS and apps)

• Information becomes a commodity.

• Advertising becomes a computer marketplace.

Limitations:-

• Eventually PCs become powerful: OS regains all the complexity of a “big” OS

• memory protection because of multiprogramming.

Phase 5: 2000??-???? Mobile:-

• Mobile and computer operating systems have CP/M, …)

• Gates approached Seattle Computer Products, bought 86-DOS, and created MS- DOS.

• GUI operating systems was developed first time in phase 3.

Modifications:

• OS becomes a subroutine library and command executive.

• finish quickly and run existing programs.

Limitations

complicated as compare to uni programming been developed in different ways and for

different uses. Computer OS products are older and more familiar to larger groups of users.

Through the last 20 years, the simple idea of a computer operating system has been

continually built on and improved. Through this time, Microsoft Windows, Android and

Apple's Mac OS have emerged as the two dominant operating system designs.

So many types of GUI operating systems are develop in phase 5 major types are:

OS system of mobiles.

window 95,

window 98,

window XP,

window crystal vista window 8,

window 10,

Android all Versions.

The designers and developers try to develop operating system and make it user friendly all

GUI operating System is user friendly operating system. it is more easy for the user to use

GUI OS as compared to Unix, Linux, Ms. Dos etc. because while using these OS user must

familiar with its commands .

The goal in OS development is to make the machine convenient to use.

Types of an Operating System:-

1. Batch Operating System

In a Batch Operating System, the similar jobs are grouped together into batches with the help

of some operator and these batches are executed one by one. For example, let us assume that

we have 10 programs that need to be executed. Some programs are written in C++, some in C

and rest in Java. Now, every time when we run these programmes individually then we will

have to load the compiler of that particular language and then execute the code. But what if

we make a batch of these 10 programmes. The benefit with this approach is that, for the C++

batch, you need to load the compiler only once. Similarly, for Java and C, the compiler needs

to be loaded only once and the whole batch gets executed. The following image describes the

working of a Batch Operating System.

Advantages:

1. The overall time taken by the system to execute all the programmes will be reduced.

2. The Batch Operating System can be shared between multiple users.

Disadvantages:

1. Manual interventions are required between two batches.

2. The CPU utilization is low because the time taken in loading and unloading of batches

is very high as compared to execution time.

Examples of the batch operating system: transactions, payroll system, bank

statements, reporting, integration, etc.

2. Time-Sharing or Multi-tasking Operating System

In a Multi-tasking Operating System, more than one processes are being executed at a

particular time with the help of the time-sharing concept. So, in the time-sharing environment,

we decide a time that is called time quantum and when the process starts its execution then the

execution continues for only that amount of time and after that, other processes will be given

chance for that amount of time only. In the next cycle, the first process will again come for its

execution and it will be executed for that time quantum only and again next process will come.

This process will continue. The following image describes the working of a Time-Sharing

Operating System.

Advantages:

1. Since equal time quantum is given to each process, so each process gets equal

opportunity to execute.

2. The CPU will be busy in most of the cases and this is good to have case.

Disadvantages:

1. Process having higher priority will not get the chance to be executed first because the

equal opportunity is given to each process.

Examples of multitasking: eating and watching TV simultaneously, chatting during

classes, eating chocolates while walking, talking on a phone while walking, etc.

3. Distributed Operating System

In a Distributed Operating System, we have various systems and all these systems have

their own CPU, main memory, secondary memory, and resources. These systems are

connected to each other using a shared communication network. Here, each system can

perform its task individually. The best part about these Distributed Operating System is

remote access i.e. one user can access the data of the other system and can work

accordingly. So, remote access is possible in these distributed Operating Systems. The

following image shows the working of a Distributed Operating System.

Advantages:

1. Since the systems are connected with each other so, the failure of one system can't stop

the execution of processes because other systems can do the execution.

2. Resources are shared between each other.

3. The load on the host computer gets distributed and this, in turn, increases the efficiency.

Disadvantages:

1. Since the data is shared among all the computers, so to make the data secure and

accessible to few computers, you need to put some extra efforts.

2. If there is a problem in the communication network then the whole communication will

be broken.

Examples of distributed OS: intranets, the internet, sensors networks, etc.

4. Embedded Operating System

An Embedded Operating System is designed to perform a specific task for a particular device

which is not a computer. For example, the software used in elevators is dedicated to the

working of elevators only and nothing else. So, this can be an example of Embedded Operating

System. The Embedded Operating System allows the access of device hardware to the software

that is running on the top of the Operating System.

The block diagram of an embedded system consists of input devices, output devices, and

memory.

Fig The block diagram of an embedded

Input Devices: Input devices are used to send the data from the user to the system, here the user

is the input. Some of the input devices are Keyboard, mouse, microphone, hard disk, sensors,

switches, etc.

 Output Devices: Out devices show the result to the humans in the form of text, image or

sounds. Some of the output devices are printers, monitors, LCD, LED, motors, relays, buzzers,

etc.

Memory: The memory is used to store the data. Some of the memory devices are SD card,

EEPROM (Electrically Erasable Programmable Read-Only Memory), Flash memory. The

memory devices used in the embedded system are Non-volatile RAM, volatile RAM, Dynamic

Random Access Memory), etc.

Advantages:

1. Since it is dedicated to a particular job, so it is fast.

2. Low cost.

3. These consume less memory and other resources.

Disadvantages:

1. Only one job can be performed.

2. It is difficult to upgrade or is nearly scalable.

Some applications of the embedded operating system are shown in the below

• Mobiles, Washing machines, Televisions, Microwave Ovens, Televisions, Computers,

Laptops, Dishwashers, ATM’s, Satellites, Vehicles

5. Real-time Operating System

The Real-time Operating Systems are used in the situation where we are dealing with some

real-time data. So, as soon as the data comes, the execution of the process should be done and

there should be no delay i.e. no buffer delays should be there. Real-time OS is a time-sharing

system that is based on the concept of clock interrupt. So, whenever you want to process a

large number of request in a very short period of time, then you should use Real-time

Operating System. For example, the details of the temperature of the petroleum industry are

very crucial and this should be done in real-time and in a very short period of time. A small

delay can result in a life-death situation. So, this is done with the help of Real-time Operating

System. There are two types of Real-time Operating System:

1. Hard Real-time: In this type, a small delay can lead to drastic change. So, when the

time constraint is very important then we use the Hard Real-time.

2. Soft Real-time: Here, the time constraint is not that important but here also we are

dealing with some real-time data.

Advantages:

1. There is maximum utilization of devices and resources.

2. These systems are almost error-free.

Disadvantages:

1. The algorithms used in Real-time Operating System is very complex.

2. Specific device drivers are used for responding to the interrupts as soon as possible.

Example of real time OS:-

• Radar systems, network switching control systems, satellite monitoring

systems, satellite launch-control and maneuvering mechanisms, global

positioning systems all have their roots in RTOS.

• Now a days RTOS are increasingly finding use in strategic and military

operations. These are used in guided missile launching units, track-and-trace

spy satellites, etc.

6.Network operating System

A Network Operating System runs on a server and provides the server the capability to manage

data, users, groups, security, applications, and other networking functions. The primary purpose

of the network operating system is to allow shared file and printer access among multiple

computers in a network, typically a local area network (LAN), a private network or to other

networks.

Examples of network operating systems include Microsoft Windows Server 2003, Microsoft

Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.

The advantages of network operating systems are as follows −

• Centralized servers are highly stable.

• Security is server managed.

• Upgrades to new technologies and hardware can be easily integrated into the system.

• Remote access to servers is possible from different locations and types of systems.

The disadvantages of network operating systems are as follows −

• High cost of buying and running a server.

• Dependency on a central location for most operations.

• Regular maintenance and updates are required.

Examples of network OS: Windows 2000, Linux, Microsoft windows, etc.

Operating System Structure:-
An operating system is a construct that allows the user application programs to interact with the

system hardware. Since the operating system is such a complex structure, it should be created

with utmost care so it can be used and modified easily. An easy way to do this is to create the

operating system in parts. Each of these parts should be well defined with clear inputs, outputs

and functions.

1. Simple Structure(Monolithic)

2. Layered Structure or Layered Approach

3. Microkernel

o Simple Structure(Monolithic):-

• There are many operating systems that have a rather simple structure. These started as

small systems and rapidly expanded much further than their scope. A common example

of this is MS-DOS. It was designed simply for a below amount for people. There was no

indication that it would become so popular.

• An image to illustrate the structure of MS-DOS is as follows −

It is better that operating systems have a modular structure, unlike MS-DOS. That would lead to

greater control over the computer system and its various applications. The modular structure

would also allow the programmers to hide information as required and implement internal

routines as they see fit without changing the outer specifications.

Unix is another OS that was inertialy limited by hardware functionality.

It consists two separate part

o The Kernal

o System programs

The kernel is further separated into a series of interface and device driver. In monolithic system

it is possible to have at least a little structure so it is called simple structure.

2. Layered Structure or Layered Approach:-

One way to achieve modularity in the operating system is the layered approach. In this, the

bottom layer is the hardware and the topmost layer is the user interface.

An image demonstrating the layered approach is as follows –

As seen from the image, each upper layer is built on the bottom layer. All the layers hide some

structures, operations etc from their upper layers.

One problem with the layered structure is that each layer needs to be carefully defined. This is

necessary because the upper layers can only use the functionalities of the layers below them.

Kernel-Based Approach

A kernel is a central component of an operating system. It acts as an interface between the user

applications and the hardware. It manages the communication between the software (user level

applications) and the hardware (CPU, disk memory, etc). The kernel provides functions like

Process management, Device management, Memory management, Interrupt handling, I/O

communication, File system, etc.

Note: Kernel and Kernel OS are different.

We can say that Linux is a kernel, not an operating system because it does not include

applications like file-system utilities, windowing systems, and graphical desktops, system

administrator commands, text editors, compilers, etc. So, various companies add such kind of

applications over Linux kernel and provide their operating system like Ubuntu, Suse, CentOS,

RedHat, etc.

Kernels may be classified mainly in three categories: -

1. Monolithic Kernel

2. Micro Kernel

3. Hybrid Kernel

1. Monolithic Kernel

Earlier in this type of kernel architecture, all the basic system services like process and memory

management, interrupt handling, etc. were packaged into a single module in kernel space. This

type of architecture led to some serious drawbacks like the huge size of the kernel, poor

maintainability, which meant fixing bugs or addition of new features required recompilation of

the whole kernel!

In modern-day approach to monolithic architecture, the kernel consists of different modules

which can be dynamically loaded and unloaded. This modular approach allows easy extension of

OS's capabilities. With this approach, maintainability of the kernel also has become easy as only

the concerned module needs to be loaded and unloaded every time there is a change or bug fix.

Also, because of this dynamic loading and unloading of the modules, stripping down the kernel

for smaller platforms (like embedded devices, etc.) became easy too.

Linux follows the monolithic modular approach.

Fig: Monolithic kernel

2. Micro kernels:-

This architecture majorly solves the problem of the ever-growing size of kernel code which can't

be controlled in the monolithic approach. This architecture offers some basic services like device

driver management, a protocol stack, file system, etc. to run in user-space. This reduces the

kernel code size and also increases the more security and stability of OS as there's bare minimum

code running in the kernel.

This architecture also provides robustness. Suppose a network service crashes due to a buffer

overflow, then only the networking service's memory would be corrupted, leaving the rest of the

system still functional. In this architecture, all the basic OS services which are made part of user

space run as servers which are used by other programs in the system through inter process

communication (IPC). E.g. There are servers for device drivers, network protocol stacks, file

systems, graphics, etc.

Micro-kernel servers are essentially daemon programs. Kernel grants some of them privileges to

interact with parts of physical memory that are otherwise off-limits to most programs. This

allows some servers, specific device drivers, to interact directly with the hardware. These servers

are started at the system start-up.

So, the bare minimum that micro Kernel architecture recommends in kernel space -

• Managing memory protection

• Process scheduling

• Inter-process communication (IPC)

Apart from the above, all other basic services can be made part of user space and can be run in

the form of servers.

Fig: Microkernel

3. Hybrid Kernel

Hybrid Kernel combines the advantages of Monolithic kernel and Micro Kernel. This kernel

takes some features from monolithic kernel like speed, simplicity of design, and modularity plus

execution safety from the micro kernel.

Structure of a hybrid kernel is similar to the micro-kernel but it is implemented like a monolithic

kernel. All operating system services like IPC (Inter-process communication), device drivers,

etc. live in kernel space. So the benefits to the user space are reduced but it still has services like

Unix-server, file server, and applications. Hybrid Kernel also doesn't have performance overhead

for context switching and message passing. The best example of the Hybrid kernel is Microsoft

Windows NT Kernel.

Fig: Hybrid kernel

Operating System Services:-

An Operating System provides services to both the users and to the programs.

• It provides programs an environment to execute.

• It provides users the services to execute the programs in a convenient manner.

Following are a few common services provided by an operating system −

• Program execution

• I/O operations

• File System manipulation

• Communication

• Error Detection

• Resource Allocation

• Protection

Program execution:-

Operating systems handle many kinds of activities from user programs to system programs like

printer spooler, name servers, file server, etc. Each of these activities is encapsulated as a

process.

A process includes the complete execution context (code to execute, data to manipulate,

registers, OS resources in use). Following are the major activities of an operating system with

respect to program management −

• Loads a program into memory.

• Executes the program.

• Handles program's execution.

• Provides a mechanism for process synchronization.

• Provides a mechanism for process communication.

• Provides a mechanism for deadlock handling.

I/O Operation:-

An I/O subsystem comprises of I/O devices and their corresponding driver software. Drivers

hide the peculiarities of specific hardware devices from the users.

An Operating System manages the communication between user and device drivers.

• I/O operation means read or write operation with any file or any specific I/O device.

• Operating system provides the access to the required I/O device when required.

File system manipulation:-

A file represents a collection of related information. Computers can store files on the disk

(secondary storage), for long-term storage purpose. Examples of storage media include

magnetic tape, magnetic disk and optical disk drives like CD, DVD. Each of these media has its

own properties like speed, capacity, data transfer rate and data access methods.

A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions. Following are the major activities of an

operating system with respect to file management −

• Program needs to read a file or write a file.

• The operating system gives the permission to the program for operation on file.

• Permission varies from read-only, read-write, denied and so on.

• Operating System provides an interface to the user to create/delete files.

• Operating System provides an interface to the user to create/delete directories.

• Operating System provides an interface to create the backup of file system.

Communication:-

In case of distributed systems which are a collection of processors that do not share memory,

peripheral devices, or a clock, the operating system manages communications between all the

processes. Multiple processes communicate with one another through communication lines in

the network.

The OS handles routing and connection strategies, and the problems of contention and security.

Following are the major activities of an operating system with respect to communication −

• Two processes often require data to be transferred between them

• Both the processes can be on one computer or on different computers, but are connected

through a computer network.

• Communication may be implemented by two methods, either by Shared Memory or by

Message Passing.

Error handling:-

Errors can occur anytime and anywhere. An error may occur in CPU, in I/O devices or in the

memory hardware. Following are the major activities of an operating system with respect to

error handling −

• The OS constantly checks for possible errors.

• The OS takes an appropriate action to ensure correct and consistent computing.

Resource Management:-

In case of multi-user or multi-tasking environment, resources such as main memory, CPU

cycles and files storage are to be allocated to each user or job. Following are the major activities

of an operating system with respect to resource management −

• The OS manages all kinds of resources using schedulers.

• CPU scheduling algorithms are used for better utilization of CPU.

Protection:-

Considering a computer system having multiple users and concurrent execution of multiple

processes, the various processes must be protected from each other's activities.

Protection refers to a mechanism or a way to control the access of programs, processes, or users

to the resources defined by a computer system. Following are the major activities of an

operating system with respect to protection −

• The OS ensures that all access to system resources is controlled.

• The OS ensures that external I/O devices are protected from invalid access attempts.

• The OS provides authentication features for each user by means of passwords.

Components of Operating System:-

The components of an operating system play a key role to make a variety of computer system

parts work together. The operating components are discussed below.

Kernel

The kernel in the OS provides the basic level of control on all the computer peripherals. In the

operating system, the kernel is an essential component that loads firstly and remains within the

main memory. So that memory accessibility can be managed for the programs within the RAM,

it creates the programs to get access from the hardware resources. It resets the operating states of

the CPU for the best operation at all times.

Process Execution

The OS gives an interface between the hardware as well as an application program so that the

program can connect through the hardware device by simply following procedures & principles

configured into the OS. The program execution mainly includes a process created through an OS

kernel that uses memory space as well as different types of other resources.

Interrupt

https://www.elprocus.com/simple-steps-burn-program-into-microcontroller/
https://www.pcbway.com/activity/anniversary6sales.html?from=elprocus6th

In the operating system, interrupts are essential because they give a reliable technique for the OS

to communicate & react to their surroundings. An interrupt is nothing but one kind of signal

between a device as well as a computer system otherwise from a program in the computer that

requires the OS to leave and decide accurately what to do subsequently. Whenever an interrupt

signal is received, then the hardware of the computer puts on hold automatically whatever

computer program is running presently, keeps its status & runs a computer program which is

connected previously with the interrupt.

Memory Management

The functionality of an OS is nothing but memory management which manages main memory &

moves processes backward and forward between disk & main memory during implementation.

This tracks each & every memory position; until it is assigned to some process otherwise it is

open. It verifies how much memory can be allocated to processes and also makes a decision to

know which process will obtain memory at what time. Whenever memory is unallocated, then it

tracks correspondingly to update the status. Memory management work can be divided into three

important groups like memory management of hardware, OS and application memory

management.

Multitasking

It describes the working of several independent computer programs on a similar computer

system. Multitasking in an OS allows an operator to execute one or more computer tasks at a

time. Since many computers can perform one or two tasks at a time, usually this can be done

with the help of time-sharing, where each program uses the time of a computer to execute.

Networking

Networking can be defined as when the processor interacts with each other through

communication lines. The design of communication-network must consider routing, connection

methods, safety, the problems of opinion & security.

Presently most of the operating systems maintain different networking techniques, hardware, &

applications. This involves that computers that run on different operating systems could be

included in a general network to share resources like data, computing, scanners, printers, which

uses the connections of either wired otherwise wireless.

Security

https://www.elprocus.com/types-of-interrupts-in-8051-microcontroller-and-interrupt-programming/

If a computer has numerous individuals to allow the immediate process of various processes,

then the many processes have to be protected from other activities. This system security mainly

depends upon a variety of technologies that work effectively. Current operating systems give an

entry to a number of resources, which are obtainable to work the software on the system, and to

external devices like networks by means of the kernel. The operating system should be capable

of distinguishing between demands which have to be allowed for progressing & others that don’t

need to be processed. Additionally, to permit or prohibit a security version, a computer system

with a high level of protection also provides auditing options. So this will allow monitoring the

requests from accessibility to resources

User Interface

A GUI or user interface (UI) is the part of an OS that permits an operator to get the information.

A user interface based on text displays the text as well as its commands which are typed over a

command line with the help of a keyboard.

The OS-based applications mainly provide a specific user interface for efficient communication.

The main function of a user interface of an application is to get the inputs from the operator & to

provide o/ps to the operator. But, the sorts of inputs received from the user interface as well as

the o/p types offered by the user interface may change from application to application. The UI of

any application can be classified into two types namely GUI (graphical UI) & CLI (command

line user interface).

Thus, this is all about an overview of an operating system. The main components of an OS

mainly include kernel, API or application program interface, user interface & file system,

hardware devices and device drivers.

Virtual Machine
A Virtual Machine (VM) is a compute resource that uses software instead of a physical

computer to run programs and deploy apps. One or more virtual “guest” machines run

on a physical “host” machine. Each virtual machine runs its own operating system and functions

separately from the other VMs, even when they are all running on the same host. This means

that, for example, a virtual MacOS virtual machine can run on a physical PC. Virtual machine

technology is used for many use cases across on-premises and cloud environments. More

recently, public cloud services are using virtual machines to provide virtual application

resources to multiple users at once, for even more cost efficient and flexible compute.

https://en.wikipedia.org/wiki/Operating_system

Virtual machines (VMs) allow a business to run an operating system that behaves like a

completely separate computer in an app window on a desktop. VMs may be deployed to

accommodate different levels of processing power needs, to run software that requires a different

operating system, or to test applications in a safe, sandboxed environment.

Virtual machines have historically been used for server virtualization, which enables IT teams

to consolidate their computing resources and improve efficiency. Additionally,

virtual machines can perform specific tasks considered too risky to carry out in a host

environment, such as accessing virus-infected data or testing operating systems. Since the virtual

machine is separated from the rest of the system, the software inside the virtual machine cannot

tamper with the host computer.

.

https://www.vmware.com/topics/glossary/content/server-virtualization

UNIT-2

Process:-

A program in execution is called process. The processer (A processor, is a small chip that resides
in computers and other electronic devices. Its basic job is to receive input and provide the

appropriate output.) has to manage several activities at one time. Each activity is correspond to
one process. Process execution must progress in sequential fashion. The OS must maintain a data
structure for each process, which describes the state and resource ownership of that process, and
which enables the OS to exert control over each process.

When a program is loaded into the memory and it becomes a process, it can be divided into four
sections ─ stack, heap, text and data. The following image shows a simplified layout of a
process inside main memory –

Stack
The process Stack contains the temporary data such as method/function
parameters, return address and local variables.

Heap
This is dynamically allocated memory to a process during its run time.

Text
This includes the current activity represented by the value of Program
Counter and the contents of the processor's registers.

Data
This section contains the global and static variables.

Difference between Process and a Program:-

https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Data_structure

Main()
{
 int i, prod=1;
for(i=0;i<100;i++)
prod=prod*i;
}

 This is a program that contain one multiplication statement(prod=prod*i) but
the process will execute 100 multiplication.

 Process is active entity.
 Program is passive entity.

SR.NO. PROGRAM PROCESS

1.

Program contains a set of
instructions designed to complete a
specific task.

Process is an instance of an
executing program.

2.
Program is a passive entity as it
resides in the secondary memory.

Process is a active entity as it is
created during execution and loaded
into the main memory.

3.
Program exists at a single place and
continues to exist until it is deleted.

Process exists for a limited span of
time as it gets terminated after the
completion of task.

4. Program is a static entity. Process is a dynamic entity.

5.

Program does not have any
resource requirement, it only
requires memory space for storing
the instructions.

Process has a high resource
requirement, it needs resources like
CPU, memory address, I/O during
its lifetime.

6.
Program does not have any control
block.

Process has its own control block
called Process Control Block.

Process States or Process Life Cycle:-
When a process comes in execution it change its states. The state of a process is defined in part
by the current activity of that process. Each process may be one of the following state during the

time of execution.
New: In this state the process is being created.
Ready: In this state the process is to be assign a duty by the processor.
Waiting: In this state the process is waiting or blocked for some event to occur such as
input/output completion.
Running: In this state Instructions are executed.
Terminated: In this state the process has finished the execution

State Transition Diagram:-

Process Control Block (PCB):-
In OS each process is represented by a process control block or task control block. It is a data
structure that physically represent a process in the memory of a computer system. It contains
pieces of information associate with a specific process that include following:-

PCB

Pointer:- A pointer to parent process.

Process State:- It indicates the information about the state of process such as

blocked ready running etc.

Process ID:- Each process is assigned a unique identification number, when it is

entered into the system.

Program Counter:- It indicates the address of the next instruction to be executed.

CPU Registers:- It indicates the information about the contents of the CPU registers. The

information of CPU registers must be saved when an interrupt occurs, so that the process can be

continued correctly afterward. Registers hold the processed the result of calculations or addresses

pointing to the memory locations of desired data.

CPU Scheduling Information:- It indicates the information needed for CPU scheduling such as

process priority, pointers to scheduling queues and other scheduling parameters.

Memory Management Information:- It indicates the information needed for memory

management such as value of the base and limit registers, page tables or segment tables, amount

of memory units allocated to the process etc.

Accounting Information:- It indicates the information about process number, CPU used by the

process time limits etc.

I/O Status Information:- It indicates the information about I/O devices allocated to the process

a list of open files access rights of files opened and so on,

Link to Parent Process:- A new process can be created from existing process; the existing

process is called the parent process of the newly created process. The address of the PCB of

parent process is stored.

Link to Child Process:- The addresses of the PCBs of the child processes in the main memory

are stored.

Process Scheduling
 The two main objectives of the process scheduling system are to keep the CPU busy at all

times and to deliver "acceptable" response times for all programs, particularly for
interactive ones.

 The process scheduler must meet these objectives by implementing suitable policies for
swapping processes in and out of the CPU.

 (Note that these objectives can be conflicting. In particular, every time the system steps
in to swap processes it takes up time on the CPU to do so, which is thereby "lost" from
doing any useful productive work.)

3.2.1 Scheduling Queues
 All processes are stored in the job queue.
 Processes in the Ready state are placed in the ready queue.
 Processes waiting for a device to become available or to deliver data are placed in device

queues. There is generally a separate device queue for each device.
 Other queues may also be created and used as needed.

Figure 3.5 - The ready queue and various I/O device queues

Cooperating Process:-

Cooperating processes are those that can affect or are affected by other processes running on the
system. Cooperating processes may share data with each other.

Reasons for needing cooperating processes

There may be many reasons for the requirement of cooperating processes. Some of these are
given as follows −

 Modularity
Modularity involves dividing complicated tasks into smaller subtasks. These subtasks can
completed by different cooperating processes. This leads to faster and more efficient
completion of the required tasks.

 Information Sharing
Sharing of information between multiple processes can be accomplished using
cooperating processes. This may include access to the same files. A mechanism is
required so that the processes can access the files in parallel to each other.

 Convenience
There are many tasks that a user needs to do such as compiling, printing, editing etc. It is
convenient if these tasks can be managed by cooperating processes.

 Computation Speedup
Subtasks of a single task can be performed parallely using cooperating processes. This
increases the computation speedup as the task can be executed faster. However, this is
only possible if the system has multiple processing elements.

Methods of Cooperation

Cooperating processes can coordinate with each other using shared data or messages. Details
about these are given as follows −

 Cooperation by Sharing

The cooperating processes can cooperate with each other using shared data such as
memory, variables, files, databases etc. Critical section is used to provide data integrity
and writing is mutually exclusive to prevent inconsistent data.

A diagram that demonstrates cooperation by sharing is given as follows −

 In the above diagram, Process P1 and P2 can cooperate with each other using shared data
such as memory, variables, files, databases etc.

 Cooperation by Communication

The cooperating processes can cooperate with each other using messages. This may lead
to deadlock if each process is waiting for a message from the other to perform a
operation. Starvation is also possible if a process never receives a message.

A diagram that demonstrates cooperation by communication is given as follows –

In the above diagram, Process P1 and P2 can cooperate with each other using messages to
communicate.

Thread

A thread is an execution unit that has its own program counter, a stack and a set of registers
that reside in a process . Threads can’t exist outside any process. Also, each thread belongs to
exactly one process. The information like code segment, files, and data segment can be shared
by the different threads.

Threads are popularly used to improve the application through parallelism. Actually only one
thread is executed at a time by the CPU, but the CPU switches rapidly between the threads to
give an illusion that the threads are running parallelly.

Threads are also known as light-weight processes.

https://afteracademy.com/blog/what-is-a-process-in-operating-system-and-what-are-the-different-states-of-a-process

The diagram above shows the single-threaded process and the multi-threaded process.
A single-threaded process is a process with a single thread. A multi-threaded process is a
process with multiple threads. As the diagram clearly shows that the multiple threads in it
have its own registers, stack, and counter but they share the code and data segment.
Types of Thread
User-Level Thread

1. The user-level threads are managed by users and the kernel is not aware of it.
2. These threads are faster to create and manage.

3. The kernel manages them as if it was a single-threaded process.

4. It is implemented using user-level libraries and not by system calls. So, no call to the
operating system is made when a thread switches the context.

5. Each process has its own private thread table to keep the track of the threads.

Kernel-Level Thread

1. The kernel knows about the thread and is supported by the OS.

2. The threads are created and implemented using system calls.

3. The thread table is not present here for each process. The kernel has a thread table to
keep the track of all the threads present in the system.

4. Kernel-level threads are slower to create and manage as compared to user-level
threads.

Advantages of threads

1. Performance: Threads improve the overall performance(throughput, computational
speed, responsiveness) of a program.

2. Resource sharing: As the threads can share the memory and resources of any process
it allows any application to perform multiple activities inside the same address space.

3. Utilization of Multiple Processor Architecture: The different threads can run
parallel on the multiple processors hence, this enables the utilization of the processor
to a large extent and efficiency.

4. Reduced Context Switching Time: The threads minimize the context switching time
as in Thread Switching, the virtual memory space remains the same.

5. Concurrency: Thread provides concurrency within a process.

6. Parallelism: Parallel programming techniques are easier to implement.

Difference between process and thread
1. Definition: Process means a program that is currently under execution, whereas thread

is an entity that resides within a process that can be scheduled for execution.
2. Termination Time: The processes take more time to terminate, whereas threads take

less time to terminate.

3. Creation Time: The process creation time takes more time as compared to thread
creation time.

4. Context Switching Time: Process context switching takes more time as compared to
the thread context switching.

5. Communication: The communication between threads requires less time as compared
to the communication between processes.

6. Resources: Processes are also called heavyweight processes as they use more
resources. The threads are called light-weight processes as they share resources.

7. Memory: A Process is run in separate memory space, whereas threads run in shared
memory space.

8. Sharing Data: Different processes have different copies of data, files, and codes
whereas threads share the same copy of data, file and code segments.

9. Example: Opening a new browser (say Chrome, etc) is an example of creating a
process. At this point, a new process will start to execute. On the contrary, opening
multiple tabs in the browser is an example of creating the thread.

https://afteracademy.com/blog/what-is-a-process-in-operating-system-and-what-are-the-different-states-of-a-process

Inter Process Communication (IPC)

What is Inter Process Communication?
Inter process communication (IPC) is used for exchanging data between multiple threads in
one or more processes or programs. The Processes may be running on single or multiple
computers connected by a network. The full form of IPC is Inter-process communication.

It is a set of programming interface which allow a programmer to coordinate activities among
various program processes which can run concurrently in an operating system. This allows a
specific program to handle many user requests at the same time.

Since every single user request may result in multiple processes running in the operating system,
the process may require to communicate with each other. Each IPC protocol approach has its
own advantage and limitation, so it is not unusual for a single program to use all of the IPC
methods.

Approaches for Inter-Process Communication
Here, are few important methods for interprocess communication:

Pipes

Pipe is widely used for communication between two related processes. This is a half-duplex
method, so the first process communicates with the second process. However, in order to achieve
a full-duplex, another pipe is needed.

Message Passing:

It is a mechanism for a process to communicate and synchronize. Using message passing, the
process communicates with each other without resorting to shared variables.

IPC mechanism provides two operations:

 Send (message)- message size fixed or variable
 Received (message)

Message Queues:

A message queue is a linked list of messages stored within the kernel. It is identified by a
message queue identifier. This method offers communication between single or multiple
processes with full-duplex capacity.

Direct Communication:

In this type of inter-process communication process, should name each other explicitly. In this
method, a link is established between one pair of communicating processes, and between each
pair, only one link exists.

Indirect Communication:

Indirect communication establishes like only when processes share a common mailbox each pair
of processes sharing several communication links. A link can communicate with many processes.
The link may be bi-directional or unidirectional.

Shared Memory:

Shared memory is a memory shared between two or more processes that are established using
shared memory between all the processes. This type of memory requires to protected from each
other by synchronizing access across all the processes.

FIFO:

Communication between two unrelated processes. It is a full-duplex method, which means that
the first process can communicate with the second process, and the opposite can also happen.

CPU Scheduling:-

CPU scheduling is a process which allows one process to use the CPU while the execution of
another process is on hold(in waiting state) due to unavailability of any resource like I/O etc,
thereby making full use of CPU. The aim of CPU scheduling is to make the system efficient, fast
and fair.

Whenever the CPU becomes idle, the operating system must select one of the processes in
the ready queue to be executed. The selection process is carried out by the short-term scheduler
(or CPU scheduler). The scheduler selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them.

Schedulers:-

A scheduler is a type of system software that allows you to handle process scheduling.

There are mainly three types of Process Schedulers:

1. Long Term
2. Short Term
3. Medium Term

Long Term Scheduler or Job Scheduler :-

Long term scheduler is also known as a job scheduler. This scheduler regulates the program and
select process from the queue and loads them into memory for execution. It also regulates the
degree of multi-programming.

However, the main goal of this type of scheduler is to offer a balanced mix of jobs, like
Processor, I/O jobs., that allows managing multiprogramming.

Medium Term Scheduler:-

Medium-term scheduling is an important part of swapping. It enables you to handle the swapped
out-processes. In this scheduler, a running process can become suspended, which makes an I/O
request.

A running process can become suspended if it makes an I/O request. A suspended processes can't
make any progress towards completion. In order to remove the process from memory and make
space for other processes, the suspended process should be moved to secondary storage.

Short Term Scheduler:-

Short term scheduling is also known as CPU scheduler. The main goal of this scheduler is to
boost the system performance according to set criteria. This helps you to select from a group of
processes that are ready to execute and allocates CPU to one of them. The dispatcher gives
control of the CPU to the process selected by the short term scheduler.

Difference between Schedulers:-

Long-Term Vs. Short Term Vs. Medium-Term

Long-Term Short-Term Medium-Term

Long term is also known as a
job scheduler

Short term is also known as
CPU scheduler

Medium-term is also
called swapping
scheduler.

It is either absent or minimal in
a time-sharing system.

It is insignificant in the time-
sharing order.

This scheduler is an
element of Time-sharing
systems.

Speed is less compared to the
short term scheduler.

Speed is the fastest compared to
the short-term and medium-
term scheduler.

It offers medium speed.

Allow you to select processes
from the loads and pool back
into the memory

It only selects processes that is
in a ready state of the
execution.

It helps you to send
process back to memory.

Offers full control Offers less control
Reduce the level of
multiprogramming.

Types of CPU Scheduling

Here are two kinds of Scheduling methods:

Preemptive Scheduling

In Preemptive Scheduling, the tasks are mostly assigned with their priorities. Sometimes it is
important to run a task with a higher priority before another lower priority task, even if the lower
priority task is still running. The lower priority task holds for some time and resumes when the
higher priority task finishes its execution.

Non-Preemptive Scheduling

In this type of scheduling method, the CPU has been allocated to a specific process. The process
that keeps the CPU busy will release the CPU either by switching context or terminating. It is the
only method that can be used for various hardware platforms. That's because it doesn't need
special hardware (for example, a timer) like preemptive scheduling.

When scheduling is Preemptive or Non-Preemptive?

To determine if scheduling is preemptive or non-preemptive, consider these four parameters:

1. A process switches from the running to the waiting state.
2. Specific process switches from the running state to the ready state.
3. Specific process switches from the waiting state to the ready state.
4. Process finished its execution and terminated.

Only conditions 1 and 4 apply, the scheduling is called non- preemptive.
All other scheduling are preemptive.

CPU Scheduling Criteria

A CPU scheduling algorithm tries to maximize and minimize the following:

Maximize:

CPU utilization: CPU utilization is the main task in which the operating system needs to make
sure that CPU remains as busy as possible. It can range from 0 to 100 percent. However, for the
RTOS, it can be range from 40 percent for low-level and 90 percent for the high-level system.

Throughput: The number of processes that finish their execution per unit time is known
Throughput. So, when the CPU is busy executing the process, at that time, work is being done,
and the work completed per unit time is called Throughput.

Minimize:

Waiting time: Waiting time is an amount that specific process needs to wait in the ready queue.

Response time: It is an amount to time in which the request was submitted until the first
response is produced.

Turnaround Time: Turnaround time is an amount of time to execute a specific process. It is the
calculation of the total time spent waiting to get into the memory, waiting in the queue and,
executing on the CPU. The period between the time of process submission to the completion
time is the turnaround time.

Interval Timer

Timer interruption is a method that is closely related to preemption. When a certain process gets
the CPU allocation, a timer may be set to a specified interval. Both timer interruption and
preemption force a process to return the CPU before its CPU burst is complete.

Most of the multi-programmed operating system uses some form of a timer to prevent a process
from tying up the system forever.

Types of CPU scheduling Algorithm

There are mainly six types of process scheduling algorithms

1. First Come First Serve (FCFS)
2. Shortest-Job-First (SJF) Scheduling
3. Shortest Remaining Time
4. Priority Scheduling
5. Round Robin Scheduling
6. Multilevel Queue Scheduling

Scheduling Algorithms

First Come First Serve

First Come First Serve is the
full form of FCFS. It is the
easiest and most simple CPU
scheduling algorithm. In this
type of algorithm, the
process which requests the CPU
gets the CPU allocation first. This
scheduling method can be
managed with a FIFO queue.

As the process enters the ready queue, its PCB (Process Control Block) is linked with the tail of
the queue. So, when CPU becomes free, it should be assigned to the process at the beginning of
the queue.

Characteristics of FCFS method:
 It offers non-preemptive and pre-emptive scheduling algorithm.
 Jobs are always executed on a first-come, first-serve basis.
 It is easy to implement and use.
 However, this method is poor in performance, and the general wait time is quite high.

 Lets take an example:-

Q:-Draw the Gantt chart for FCFS at arrival time zero and burst-time is given in micro second
calculate average waiting time and also calculate turn around time for the same process.

Process Burst Time

P1 13

P2 08

P3 83

Problems with FCFS Scheduling:-

Below we have a few shortcomings or problems with the FCFS
scheduling algorithm:

 It is Non Pre-emptive algorithm, which means the process priority doesn't matter. If a
process with very least priority is being executed, more like daily routine
backup process, which takes more time, and all of a sudden some other high priority
process arrives, like interrupt to avoid system crash, the high priority process will have
to wait, and hence in this case, the system will crash, just because of improper process
scheduling.

 Not optimal Average Waiting Time.
 Resources utilization in parallel is not possible, which leads to Convoy Effect, and hence

poor resource(CPU, I/O etc) utilization.

Shortest Remaining Time

The full form of SRT is Shortest remaining time. It is also known as SJF preemptive scheduling.
In this method, the process will be allocated to the task, which is closest to its completion. This
method prevents a newer ready state process from holding the completion of an older process.

Characteristics of SRT scheduling method:

 This method is mostly applied in batch environments where short jobs are required to be
given preference.

 This is not an ideal method to implement it in a shared system where the required CPU
time is unknown.

 Associate with each process as the length of its next CPU burst. So that operating system
uses these lengths, which helps to schedule the process with the shortest possible time.

Shortest Job First

SJF is a full form of (Shortest job first) is a scheduling algorithm in which the process with the
shortest execution time should be selected for execution next. This scheduling method can be
preemptive or non-preemptive. It significantly reduces the average waiting time for other
processes awaiting execution.

Shortest Job First scheduling works on the process with the shortest burst time or duration first.

 This is the best approach to minimize waiting time.

 This is used in Batch Systems.
 It is of two types:

1. Non Pre-emptive
2. Pre-emptive

 To successfully implement it, the burst time/duration time of the processes should be
known to the processor in advance, which is practically not feasible all the time.

 This scheduling algorithm is optimal if all the jobs/processes are available at the same
time. (either Arrival time is 0 for all, or Arrival time is same for all.

Characteristics of SJF Scheduling

 It is associated with each job as a unit of time to complete.
 In this method, when the CPU is available, the next process or job with the shortest

completion time will be executed first.
 It is Implemented with non-preemptive policy.
 This algorithm method is useful for batch-type processing, where waiting for jobs to

complete is not critical.
 It improves job output by offering shorter jobs, which should be executed first, which

mostly have a shorter turnaround time.

Non Pre-emptive Shortest Job First

Consider the below processes available in the ready queue for execution, with arrival
time as 0 for all and given burst times.

https://www.studytonight.com/operating-system/types-of-os

As you can see in the GANTT chart above, the process P4 will be picked up first as it has the
shortest burst time, then P2, followed by P3 and at last P1.
We scheduled the same set of processes using the First come first serve algorithm in the previous
tutorial, and got average waiting time to be 18.75 ms, whereas with SJF, the average waiting
time comes out 4.5 ms.

Problem with Non Pre-emptive SJF
If the arrival time for processes are different, which means all the processes are not available in
the ready queue at time 0, and some jobs arrive after some time, in such situation, sometimes
process with short burst time have to wait for the current process's execution to finish, because in
Non Pre-emptive SJF, on arrival of a process with short duration, the existing job/process's
execution is not halted/stopped to execute the short job first.
This leads to the problem of Starvation, where a shorter process has to wait for a long time until
the current longer process gets executed. This happens if shorter jobs keep coming, but this can
be solved using the concept of aging.

https://www.studytonight.com/operating-system/first-come-first-serve

Pre-emptive Shortest Job First
In Preemptive Shortest Job First Scheduling, jobs are put into ready queue as they arrive, but as a
process with short burst time arrives, the existing process is preempted or removed from
execution, and the shorter job is executed first.

As you can see in the GANTT chart above, as P1 arrives first, hence it's execution starts
immediately, but just after 1 ms, process P2 arrives with a burst time of 3 ms which is less than
the burst time of P1, hence the process P1(1 ms done, 20 ms left) is preemptied and
process P2 is executed.

As P2 is getting executed, after 1 ms, P3 arrives, but it has a burst time greater than that of P2,
hence execution of P2 continues. But after another millisecond, P4 arrives with a burst time of 2
ms, as a result P2(2 ms done, 1 ms left) is preemptied and P4 is executed.

After the completion of P4, process P2 is picked up and finishes, then P2 will get executed and
at last P1.

The Pre-emptive SJF is also known as Shortest Remaining Time First, because at any given
point of time, the job with the shortest remaining time is executed first.

Priority Based Scheduling

Priority scheduling is a method of scheduling processes based on priority. In this method, the
scheduler selects the tasks to work as per the priority.

Priority scheduling also helps OS to involve priority assignments. The processes with higher
priority should be carried out first, whereas jobs with equal priorities are carried out on a round-
robin or FCFS basis. Priority can be decided based on memory requirements, time requirements,
etc.

In case of priority scheduling the priority is not always set as the inverse of the CPU burst time,
rather it can be internally or externally set, but yes the scheduling is done on the basis of priority
of the process where the process which is most urgent is processed first, followed by the ones
with lesser priority in order.

Processes with same priority are executed in FCFS manner.

The priority of process, when internally defined, can be decided based on memory
requirements, time limits ,number of open files, ratio of I/O burst to CPU burst etc.

Whereas, external priorities are set based on criteria outside the operating system, like the
importance of the process, funds paid for the computer resource use, makrte factor etc.

Types of Priority Scheduling Algorithm

Priority scheduling can be of two types:

1. Preemptive Priority Scheduling: If the new process arrived at the ready queue has a
higher priority than the currently running process, the CPU is preempted, which means
the processing of the current process is stoped and the incoming new process with higher
priority gets the CPU for its execution.

2. Non-Preemptive Priority Scheduling: In case of non-preemptive priority scheduling
algorithm if a new process arrives with a higher priority than the current running process,
the incoming process is put at the head of the ready queue, which means after the
execution of the current process it will be processed.

Advantages-

 It considers the priority of the processes and allows the important processes to run first.
 Priority scheduling in preemptive mode is best suited for real time operating system.

Disadvantages-

 Processes with lesser priority may starve for CPU.
 There is no idea of response time and waiting time.
Important Notes-
Note-01:

 The waiting time for the process having the highest priority will always be zero in
preemptive mode.

 The waiting time for the process having the highest priority may not be zero in non-
preemptive mode.

Note-02:

Priority scheduling in preemptive and non-preemptive mode behaves exactly same under
following conditions-

 The arrival time of all the processes is same
 All the processes become available

PRACTICE PROBLEMS BASED ON PRIORITY

SCHEDULING-

Problem-01:

Consider the set of 5 processes whose arrival time and burst time are given below-

Process
Id

Arrival time
Burst
time

 Priority

P1 0 4 2

P2 1 3 3

P3 2 1 4

P4 3 5 5

P5 4 2 5

If the CPU scheduling policy is priority non-preemptive, calculate the average waiting time and
average turn around time. (Higher number represents higher priority)
 Solution- Gantt Chart-

Now, we know-
 Turn Around time = Exit time – Arrival time
 Waiting time = Turn Around time – Burst time

Proce
ss Id

Exit
time

Turn
Around
time

Waiting
time

P1 4 4 – 0 = 4 4 – 4 = 0

P2 15 15 – 1 = 14 14 – 3 = 11

P3 12 12 – 2 = 10 10 – 1 = 9

P4 9 9 – 3 = 6 6 – 5 = 1

P5 11 11 – 4 = 7 7 – 2 = 5

 Average Turn Around time = (4 + 14 + 10 + 6 + 7) / 5 = 41 / 5 = 8.2 unit

 Average waiting time = (0 + 11 + 9 + 1 + 5) / 5 = 26 / 5 = 5.2 unit

Round-Robin Scheduling

Round robin is the oldest, simplest scheduling algorithm. The name of this algorithm comes from
the round-robin principle, where each person gets an equal share of something in turn. It is
mostly used for scheduling algorithms in multitasking. This algorithm method helps for
starvation free execution of processes.

Characteristics of Round-Robin Scheduling

 Round robin is a hybrid model which is clock-driven
 Time slice should be minimum, which is assigned for a specific task to be processed.

However, it may vary for different processes.
 It is a real time system which responds to the event within a specific time limit.

Key Points:-

 A fixed time is allotted to each process, called quantum, for execution.
 Once a process is executed for given time period that process is preempted and other

process executes for given time period.

 Context switching is used to save states of preempted processes.

Example:- In the given table Process(P1, P2, P3, P4) and burst time(21, 3, 6, 2) is given. The
time quantum is 5 make a gantt chart and also calculate average waiting time.

Q2.

Wait time of each process is as follows −

Average Wait Time: (9+2+12+11) / 4 =
8.5

Multiple-Level Queues
Scheduling

This algorithm separates the ready queue
into various separate queues. In this
method, processes are assigned to a queue
based on a specific property of the
process, like the process priority, size of
the memory, etc.
However, this is not an independent
scheduling OS algorithm as it needs to use
other types of algorithms in order to

schedule the jobs.
Characteristic of Multiple-Level Queues Scheduling:

 Multiple queues should be maintained for processes with some characteristics.
 Every queue may have its separate scheduling algorithms.
 Priorities are given for each queue.

The Purpose of a Scheduling algorithm
Here are the reasons for using a scheduling algorithm:

 The CPU uses scheduling to improve its efficiency.

Process Wait Time : Service Time -
Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11



BCOM(H) 206

FUNDAMENTALS OF COMPUTERS

UNIT-2

Basics of MS-Word:-

Microsoft Word is a word processing program that was first developed by Microsoft in 1983.

Since that time, Microsoft has released an abundance of updated versions, each offering more

features and incorporating better technology than the one before it. The most current web-based

version of Microsoft Word is Office 365, but the software version of Microsoft Office 2019

includes Word 2019. Microsoft Word is included in all of the Microsoft Office application suites.

The most basic (and least expensive) suites also include Microsoft PowerPoint and Microsoft

Excel. Additional suites exist and include other Office programs, such as Microsoft Outlook and

Skype for Business.

Since MS Word is one of the most used programs of the Office Suite, some basic information

regarding its creation and development has been given below:

 Charles Simonyi, a developer and Richard Brodie, a software engineer, were the two

creators of MS Word

 This program was initially named “Multi-Tool Word” but later, was renamed as MS

Word

 It was introduced in 1983

 Word for Windows is available standalone or as a part of MS Office suite

 MS Word for Mac was introduced by Microsoft as Word 1.0 in 1985

 The extension for any word file is “.doc”

Microsoft Word used to make professional-quality documents, letters, reports, etc., MS Word is

a word processor developed by Microsoft. It has advanced features which allow you to format

and edit your files and documents in the best possible way.

Where to find MS Word on your personal computer?

It helps you to allocate resources among competing processes.
 The maximum utilization of CPU can be obtained with multi-programming.
 The processes which are to be executed are in ready queue.


Multiple-Processor Scheduling in Operating System

In multiple-processor scheduling multiple CPU’s are available and hence Load
Sharing becomes possible. However multiple processor scheduling is more complex as
compared to single processor scheduling. In multiple processor scheduling there are cases when
the processors are identical i.e. HOMOGENEOUS, in terms of their functionality, we can use
any processor available to run any process in the queue.

Approaches to Multiple-Processor Scheduling –

One approach is when all the scheduling decisions and I/O processing are handled by a single
processor which is called the Master Server and the other processors executes only the user
code. This is simple and reduces the need of data sharing. This entire scenario is
called Asymmetric Multiprocessing.

A second approach uses Symmetric Multiprocessing where each processor is self scheduling.
All processes may be in a common ready queue or each processor may have its own private
queue for ready processes. The scheduling proceeds further by having the scheduler for each
processor examine the ready queue and select a process to execute.

Real-Time Systems

• Definition – Systems whose correctness depends on their temporal aspects as well as their
functional aspects

• Performance measure – Timeliness on timing constraints (deadlines) – Speed/average case
performance are less significant.

Real-time Systems

• Real-time monitoring systems

• Signal processing systems (e.g., radar)

• On-line transaction systems

• Multimedia (e.g., live video multicasting)

• Embedded control systems: – automotives – Robots – Aircrafts – Medical devices

Real-time Scheduling

Static table-driven approach - a preprocessed analysis determines the scheduling order of tasks
to be run. Earliest deadline first may be used. Predictable, but a new analysis must be done if a
new task is added to the system.

Static priority-driven, preemptive approach - an analysis determines the priority of the
processes to be run in a regular scheduling system Easy to build on a non real-time system.
Usually a rate-monotonic algorithm is used.

Dynamic planning-based approach - when a task is being added to the system, a check on the
feasibility of adding the process is made. If it jeopardizes the other processes, it is not added.

Dynamic best effort approach - no analysis is made. Any process whose deadline is missed is
aborted. Easy to implement and might have to be used if aperiodic tasks are used.

RT Examples

Figure shows an example of these different scheduling approaches with periodic tasks.

Deadline Scheduling

Figure 10.6 shows the scheduling of aperiodic real-time tasks.

UNIT-3

Process Synchronization

Process Synchronization was introduced to handle problems that arose while multiple process

executions.

Process is categorized into two types on the basis of synchronization and these are given below:

• Independent Process

• Cooperative Process

Independent Processes

Two processes are said to be independent if the execution of one process does not affect the

execution of another process.

Cooperative Processes

Two processes are said to be cooperative if the execution of one process affects the execution of

another process. These processes need to be synchronized so that the order of execution can be

guaranteed.

Process Synchronization

It is the task phenomenon of coordinating the execution of processes in such a way that no two

processes can have access to the same shared data and resources.

• It is a procedure that is involved in order to preserve the appropriate order of execution of

cooperative processes.

• In order to synchronize the processes, there are various synchronization mechanisms.

• Process Synchronization is mainly needed in a multi-process system when multiple

processes are running together, and more than one processes try to gain access to the

same shared resource or any data at the same time.

Race Condition

At the time when more than one process is either executing the same code or accessing the same

memory or any shared variable; In that condition, there is a possibility that the output or the

value of the shared variable is wrong so for that purpose all the processes are doing the race to

say that my output is correct. This condition is commonly known as a race condition. As several

processes access and process the manipulations on the same data in a concurrent manner and due

to which the outcome depends on the particular order in which the access of data takes place.

Mainly this condition is a situation that may occur inside the critical section. Race condition in

the critical section happens when the result of multiple thread execution differs according to the

order in which the threads execute. But this condition is critical sections can be avoided if the

critical section is treated as an atomic instruction. Proper thread synchronization using locks or

atomic variables can also prevent race conditions.

Critical Section Problem

A Critical Section is a code segment that accesses shared variables and has to be executed as an

atomic action. It means that in a group of cooperating processes, at a given point of time, only

one process must be executing its critical section. If any other process also wants to execute its

critical section, it must wait until the first one finishes. The entry to the critical section is mainly

handled by wait() function while the exit from the critical section is controlled by

the signal() function.

Entry Section

In this section mainly the process requests for its entry in the critical section.

Exit Section

This section is followed by the critical section.

The solution to the Critical Section Problem

A solution to the critical section problem must satisfy the following three conditions:

1. Mutual Exclusion

Out of a group of cooperating processes, only one process can be in its critical section at a given

point of time.

2. Progress

If no process is in its critical section, and if one or more threads want to execute their critical

section then any one of these threads must be allowed to get into its critical section.

3. Bounded Waiting

After a process makes a request for getting into its critical section, there is a limit for how many

other processes can get into their critical section, before this process's request is granted. So after

the limit is reached, the system must grant the process permission to get into its critical section.

Solutions for the Critical Section

The critical section plays an important role in Process Synchronization so that the problem must

be solved.

Some widely used method to solve the critical section problem are as follows:

1.Peterson's Solution

This is widely used and software-based solution to critical section problems. Peterson's solution

was developed by a computer scientist Peterson that's why it is named so.

With the help of this solution whenever a process is executing in any critical state, then the other

process only executes the rest of the code, and vice-versa can happen. This method also helps to

make sure of the thing that only a single process can run in the critical section at a specific time.

This solution preserves all three conditions:

• Mutual Exclusion is comforted as at any time only one process can access the critical

section.

• Progress is also comforted, as a process that is outside the critical section is unable to

block other processes from entering into the critical section.

• Bounded Waiting is assured as every process gets a fair chance to enter the Critical

section.

The above shows the structure of process Pi in Peterson's solution.

• Suppose there are N processes (P1, P2, ... PN) and as at some point of time every

process requires to enter in the Critical Section

• A FLAG[] array of size N is maintained here which is by default false. Whenever a

process requires to enter in the critical section, it has to set its flag as true. Example: If Pi

wants to enter it will set FLAG[i]=TRUE.

• Another variable is called TURN and is used to indicate the process number that is

currently waiting to enter into the critical section.

• The process that enters into the critical section while exiting would change the TURN to

another number from the list of processes that are ready.

• Example: If the turn is 3 then P3 enters the Critical section and while exiting turn=4 and

therefore P4 breaks out of the wait loop.

Synchronization Hardware

Many systems provide hardware support for critical section code. The critical section problem

could be solved easily in a single-processor environment if we could disallow interrupts to occur

while a shared variable or resource is being modified.

In this manner, we could be sure that the current sequence of instructions would be allowed to

execute in order without pre-emption. Unfortunately, this solution is not feasible in a

multiprocessor environment.

Disabling interrupt on a multiprocessor environment can be time-consuming as the message is

passed to all the processors.

This message transmission lag delays the entry of threads into the critical section, and the system

efficiency decreases.

Mutex Locks

As the synchronization hardware solution is not easy to implement for everyone, a strict software

approach called Mutex Locks was introduced. In this approach, in the entry section of code, a

LOCK is acquired over the critical resources modified and used inside the critical section, and in

the exit section that LOCK is released.

As the resource is locked while a process executes its critical section hence no other process can

access it.

Classical Problems of Synchronization

In this tutorial we will discuss about various classical problem of synchronization.

Semaphore can be used in other synchronization problems besides Mutual Exclusion.

Below are some of the classical problem depicting flaws of process synchronaization in systems

where cooperating processes are present.

We will discuss the following three problems:

1. Bounded Buffer (Producer-Consumer) Problem

2. Dining Philosophers Problem

3. The Readers Writers Problem

Bounded Buffer Problem

Because the buffer pool has a maximum size, this problem is often called the Bounded buffer

problem.

• This problem is generalized in terms of the Producer Consumer problem, where

a finite buffer pool is used to exchange messages between producer and consumer

processes.

• Solution to this problem is, creating two counting semaphores "full" and "empty" to keep

track of the current number of full and empty buffers respectively.

• In this Producers mainly produces a product and consumers consume the product, but

both can use of one of the containers each time.

• The main complexity of this problem is that we must have to maintain the count for both

empty and full containers that are available.

Dining Philosophers Problem

• The dining philosopher's problem involves the allocation of limited resources to a group

of processes in a deadlock-free and starvation-free manner.

• There are five philosophers sitting around a table, in which there are five chopsticks/forks

kept beside them and a bowl of rice in the centre, When a philosopher wants to eat, he

uses two chopsticks - one from their left and one from their right. When a philosopher

wants to think, he keeps down both chopsticks at their original place.

Dining Philosophers Problem

The dining philosophers problem is another classic synchronization problem which is used to

evaluate situations where there is a need of allocating multiple resources to multiple processes.

What is the Problem Statement?

https://www.studytonight.com/operating-system/bounded-buffer
https://www.studytonight.com/operating-system/dining-philosophers-problem

Consider there are five philosophers sitting around a circular dining table. The dining table has

five chopsticks and a bowl of rice in the middle as shown in the below figure.

Dining Philosophers Problem

At any instant, a philosopher is either eating or thinking. When a philosopher wants to eat, he

uses two chopsticks - one from their left and one from their right. When a philosopher wants to

think, he keeps down both chopsticks at their original place.

Here's the Solution

From the problem statement, it is clear that a philosopher can think for an indefinite amount of

time. But when a philosopher starts eating, he has to stop at some point of time. The philosopher

is in an endless cycle of thinking and eating.

An array of five semaphores, stick[5], for each of the five chopsticks.

The code for each philosopher looks like:

while(TRUE)

{

 wait(stick[i]);

 /*

 mod is used because if i=5, next

 chopstick is 1 (dining table is circular)

 */

 wait(stick[(i+1) % 5]);

 /* eat */

 signal(stick[i]);

 signal(stick[(i+1) % 5]);

 /* think */

}

When a philosopher wants to eat the rice, he will wait for the chopstick at his left and picks up

that chopstick. Then he waits for the right chopstick to be available, and then picks it too. After

eating, he puts both the chopsticks down.

But if all five philosophers are hungry simultaneously, and each of them pickup one chopstick,

then a deadlock situation occurs because they will be waiting for another chopstick forever. The

possible solutions for this are:

• A philosopher must be allowed to pick up the chopsticks only if both the left and right

chopsticks are available.

• Allow only four philosophers to sit at the table. That way, if all the four philosophers pick

up four chopsticks, there will be one chopstick left on the table. So, one philosopher can

start eating and eventually, two chopsticks will be available. In this way, deadlocks can

be avoided.

The Readers Writers Problem

• In this problem there are some processes(called readers) that only read the shared data,

and never change it, and there are other processes(called writers) who may change the

data in addition to reading, or instead of reading it.

• There are various type of readers-writers problem, most centred on relative priorities of

readers and writers.

• The main complexity with this problem occurs from allowing more than one reader to

access the data at the same time.

Readers writer problem is another example of a classic synchronization problem. There are many

variants of this problem, one of which is examined below.

The Problem Statement

There is a shared resource which should be accessed by multiple processes. There are two types

of processes in this context. They are reader and writer. Any number of readers can read from

the shared resource simultaneously, but only one writer can write to the shared resource. When

a writer is writing data to the resource, no other process can access the resource.

A writer cannot write to the resource if there are non zero number of readers accessing the

resource at that time.

The Solution

From the above problem statement, it is evident that readers have higher priority than writer. If a

writer wants to write to the resource, it must wait until there are no readers currently accessing

that resource.

https://www.studytonight.com/operating-system/readers-writer-problem

Here, we use one mutex m and a semaphore w. An integer variable read_count is used to

maintain the number of readers currently accessing the resource. The variable read_count is

initialized to 0. A value of 1 is given initially to m and w.

Instead of having the process to acquire lock on the shared resource, we use the mutex m to

make the process to acquire and release lock whenever it is updating the read_count variable.

The code for the writer process looks like this:

while(TRUE)

{

 wait(w);

 /* perform the write operation */

 signal(w);

}

And, the code for the reader process looks like this:

while(TRUE)

{

 //acquire lock

 wait(m);

 read_count++;

 if(read_count == 1)

 wait(w);

 //release lock

 signal(m);

 /* perform the reading operation */

 // acquire lock

 wait(m);

 read_count--;

 if(read_count == 0)

 signal(w);

 // release lock

 signal(m);

}

Here is the Code uncoded(explained)

• As seen above in the code for the writer, the writer just waits on the w semaphore until it

gets a chance to write to the resource.

• After performing the write operation, it increments w so that the next writer can access

the resource.

• On the other hand, in the code for the reader, the lock is acquired whenever

the read_count is updated by a process.

• When a reader wants to access the resource, first it increments the read_count value,

then accesses the resource and then decrements the read_count value.

• The semaphore w is used by the first reader which enters the critical section and the last

reader which exits the critical section.

• The reason for this is, when the first readers enters the critical section, the writer is

blocked from the resource. Only new readers can access the resource now.

• Similarly, when the last reader exits the critical section, it signals the writer using

the w semaphore because there are zero readers now and a writer can have the chance to

access the resource.

Introduction to Semaphores

In 1965, Dijkstra proposed a new and very significant technique for managing concurrent

processes by using the value of a simple integer variable to synchronize the progress of

interacting processes. This integer variable is called a semaphore. So it is basically a

synchronizing tool and is accessed only through two low standard atomic

operations, wait and signal designated by P(S) and V(S) respectively.

In very simple words, the semaphore is a variable that can hold only a non-negative Integer

value, shared between all the threads, with operations wait and signal, which work as follow:

P(S): if S >= 1 then S := S - 1

 else <block and enqueue the process>;

V(S): if <some process is blocked on the queue>

 then <unblock a process>

 else S := S + 1;

The classical definitions of wait and signal are:

• Wait: This operation decrements the value of its argument S, as soon as it would become

non-negative(greater than or equal to 1). This Operation mainly helps you to control the

entry of a task into the critical section. In the case of the negative or zero value, no

operation is executed. wait() operation was originally termed as P; so it is also known

as P(S) operation. The definition of wait operation is as follows:

wait(S)

{

 while (S<=0);//no operation

 S--;

}

Note:

When one process modifies the value of a semaphore then, no other process can simultaneously

modify that same semaphore's value. In the above case the integer value of S(S<=0) as well as

the possible modification that is S-- must be executed without any interruption.

• Signal: Increments the value of its argument S, as there is no more process blocked on

the queue. This Operation is mainly used to control the exit of a task from the critical

section.signal() operation was originally termed as V; so it is also known as V(S)

operation. The definition of signal operation is as follows:

signal(S)

{

S++;

}

Also, note that all the modifications to the integer value of semaphore in

the wait() and signal() operations must be executed indivisibly.

Properties of Semaphores

1. It's simple and always have a non-negative integer value.

2. Works with many processes.

3. Can have many different critical sections with different semaphores.

4. Each critical section has unique access semaphores.

5. Can permit multiple processes into the critical section at once, if desirable.

We will now cover the types of semaphores in the Operating system;

Types of Semaphores

Semaphores are mainly of two types in Operating system:

1. Binary Semaphore:

It is a special form of semaphore used for implementing mutual exclusion, hence it is

often called a Mutex. A binary semaphore is initialized to 1 and only takes the

values 0 and 1 during the execution of a program. In Binary Semaphore, the wait

operation works only if the value of semaphore = 1, and the signal operation succeeds

when the semaphore= 0. Binary Semaphores are easier to implement than counting

semaphores.

2. Counting Semaphores:

These are used to implement bounded concurrency. The Counting semaphores can

range over an unrestricted domain. These can be used to control access to a given

resource that consists of a finite number of Instances. Here the semaphore count is used

to indicate the number of available resources. If the resources are added then the

semaphore count automatically gets incremented and if the resources are removed, the

count is decremented. Counting Semaphore has no mutual exclusion.

Example of Use

Here is a simple step-wise implementation involving declaration and usage of semaphore.

Shared var mutex: semaphore = 1;

Process i

 begin

 .

 .

 P(mutex);

 execute CS;

 V(mutex);

 .

 .

 End;

Advantages of Semaphores

Benefits of using Semaphores are as given below:

• With the help of semaphores, there is a flexible management of resources.

• Semaphores are machine-independent and they should be run in the machine-independent

code of the microkernel.

• Semaphores do not allow multiple processes to enter in the critical section.

• They allow more than one thread to access the critical section.

• As semaphores follow the mutual exclusion principle strictly and these are much more

efficient than some other methods of synchronization.

• No wastage of resources in semaphores because of busy waiting in semaphores as

processor time is not wasted unnecessarily to check if any condition is fulfilled in order

to allow a process to access the critical section.

Disadvantages of Semaphores

• One of the biggest limitations is that semaphores may lead to priority inversion; where

low priority processes may access the critical section first and high priority processes

may access the critical section later.

• To avoid deadlocks in the semaphore, the Wait and Signal operations are required to be

executed in the correct order.

• Using semaphores at a large scale is impractical; as their use leads to loss of modularity

and this happens because the wait() and signal() operations prevent the creation of the

structured layout for the system.

• Their use is not enforced but is by convention only.

• With improper use, a process may block indefinitely. Such a situation is called Deadlock.

Deadlock
Every process needs some resources to complete its execution. However, the resource is granted

in a sequential order.

1. The process requests for some resource.

2. OS grant the resource if it is available otherwise let the process waits.

3. The process uses it and release on the completion.

A Deadlock is a situation where each of the computer process waits for a resource which is being

assigned to some another process. In this situation, none of the process gets executed since the

resource it needs, is held by some other process which is also waiting for some other resource to

be released.

Let us assume that there are three processes P1, P2 and P3. There are three different resources

R1, R2 and R3. R1 is assigned to P1, R2 is assigned to P2 and R3 is assigned to P3.

After some time, P1 demands for R2 which is being used by P2. P1 halts its execution since it

can't complete without R2. P2 also demands for R3 which is being used by P3. P2 also stops its

execution because it can't continue without R3. P3 also demands for R1 which is being used by

P1 therefore P3 also stops its execution.

In this scenario, a cycle is being formed among the three processes. None of the process is

progressing and they are all waiting. The computer becomes unresponsive since all the processes

got blocked.

System Model:-
• For the purposes of deadlock discussion, a system can be modeled as a collection of

limited resources, which can be partitioned into different categories, to be allocated to a

number of processes, each having different needs.

• Resource categories may include memory, printers, CPUs, open files, tape drives, CD-

ROMS, etc.

• By definition, all the resources within a category are equivalent, and a request of this

category can be equally satisfied by any one of the resources in that category. If this is

not the case (i.e. if there is some difference between the resources within a category),

then that category needs to be further divided into separate categories. For example,

"printers" may need to be separated into "laser printers" and "color inkjet printers".

• Some categories may have a single resource.

• In normal operation a process must request a resource before using it, and release it when

it is done, in the following sequence:

1. Request - If the request cannot be immediately granted, then the process must

wait until the resource(s) it needs become available. For example the system calls

open(), malloc(), new(), and request().

2. Use - The process uses the resource, e.g. prints to the printer or reads from the

file.

3. Release - The process relinquishes the resource. so that it becomes available for

other processes. For example, close(), free(), delete(), and release().

• For all kernel-managed resources, the kernel keeps track of what resources are free and

which are allocated, to which process they are allocated, and a queue of processes waiting

for this resource to become available. Application-managed resources can be controlled

using mutexes or wait() and signal() calls, (i.e. binary or counting semaphores.)

• A set of processes is deadlocked when every process in the set is waiting for a resource

that is currently allocated to another process in the set (and which can only be released

when that other waiting process makes progress.)

Deadlock Characterization:-

Necessary conditions for Deadlocks

1. Mutual Exclusion

A resource can only be shared in mutually exclusive manner. It implies, if two process cannot

use the same resource at the same time.

There should be a resource that can only be held by one process at a time. In the diagram below,

there is a single instance of Resource 1 and it is held by Process 1 only.

2. Hold and Wait

A process waits for some resources while holding another resource at the same time.

A process can hold multiple resources and still request more resources from other processes

which are holding them. In the diagram given below, Process 2 holds Resource 2 and Resource 3

and is requesting the Resource 1 which is held by Process 1.

3. No preemption

The process which once scheduled will be executed till the completion. No other process can be

scheduled by the scheduler meanwhile.

A resource cannot be preempted from a process by force. A process can only release a resource

voluntarily. In the diagram below, Process 2 cannot preempt Resource 1 from Process 1. It will

only be released when Process 1 relinquishes it voluntarily after its execution is complete.

4. Circular Wait

All the processes must be waiting for the resources in a cyclic manner so that the last process is

waiting for the resource which is being held by the first process.

A process is waiting for the resource held by the second process, which is waiting for the

resource held by the third process and so on, till the last process is waiting for a resource held by

the first process. This forms a circular chain. For example: Process 1 is allocated Resource2 and

it is requesting Resource 1. Similarly, Process 2 is allocated Resource 1 and it is requesting

Resource 2. This forms a circular wait loop.

Methods for Handling Deadlocks
• Generally speaking there are three ways of handling deadlocks:

1. Deadlock prevention or avoidance - Do not allow the system to get into a deadlocked

state. In order to avoid deadlocks, the system must have additional information about all

processes. In particular, the system must know what resources a process will or may

request in the future. (Ranging from a simple worst-case maximum to a complete

resource request and release plan for each process, depending on the particular

algorithm.)

2. Deadlock detection and recovery - Abort a process or preempt some resources when

deadlocks are detected. Deadlock detection is fairly straightforward, but deadlock

recovery requires either aborting processes or preempting resources, neither of which is

an attractive alternative.

3. Ignore the problem all together - If deadlocks only occur once a year or so, it may be

better to simply let them happen and reboot as necessary than to incur the constant

overhead and system performance penalties associated with deadlock prevention or

detection. This is the approach that both Windows and UNIX take. If deadlocks are

neither prevented nor detected, then when a deadlock occurs the system will gradually

slow down, as more and more processes become stuck waiting for resources currently

held by the deadlock and by other waiting processes. Unfortunately this slowdown can be

indistinguishable from a general system slowdown when a real-time process has heavy

computing needs.

1. Deadlock Prevention

 If we simulate deadlock with a table which is standing on its four legs then we can also

simulate four legs with the four conditions which when occurs simultaneously, cause the

deadlock.

However, if we break one of the legs of the table then the table will fall definitely. The same

happens with deadlock, if we can be able to violate one of the four necessary conditions and

don't let them occur together then we can prevent the deadlock.

Let's see how we can prevent each of the conditions.

Mutual Exclusion

Spooling

For a device like printer, spooling can work. There is a memory associated with the printer which

stores jobs from each of the process into it. Later, Printer collects all the jobs and print each one

of them according to FCFS. By using this mechanism, the process doesn't have to wait for the

printer and it can continue whatever it was doing. Later, it collects the output when it is

produced.

Although, Spooling can be an effective approach to violate mutual exclusion but it suffers from

two kinds of problems.

1. This cannot be applied to every resource.

2. After some point of time, there may arise a race condition between the processes to get

space in that spool.

We cannot force a resource to be used by more than one process at the same time since it will not

be fair enough and some serious problems may arise in the performance. Therefore, we cannot

violate mutual exclusion for a process practically.

2. Hold and Wait

Hold and wait condition lies when a process holds a resource and waiting for some other

resource to complete its task. Deadlock occurs because there can be more than one process which

are holding one resource and waiting for other in the cyclic order.

However, we have to find out some mechanism by which a process either doesn't hold any

resource or doesn't wait. That means, a process must be assigned all the necessary resources

before the execution starts. A process must not wait for any resource once the execution has been

started.

!(Hold and wait) = !hold or !wait (negation of hold and wait is, either you don't hold or you

don't wait)

This can be implemented practically if a process declares all the resources initially. However,

this sounds very practical but can't be done in the computer system because a process can't

determine necessary resources initially.

Process is the set of instructions which are executed by the CPU. Each of the instruction may

demand multiple resources at the multiple times. The need cannot be fixed by the OS.

The problem with the approach is:

1. Practically not possible.

2. Possibility of getting starved will be increases due to the fact that some process may hold

a resource for a very long time.

3. No Preemption

Deadlock arises due to the fact that a process can't be stopped once it starts. However, if we take

the resource away from the process which is causing deadlock then we can prevent deadlock.

This is not a good approach at all since if we take a resource away which is being used by the

process then all the work which it has done till now can become inconsistent.

Consider a printer is being used by any process. If we take the printer away from that process

and assign it to some other process then all the data which has been printed can become

inconsistent and ineffective and also the fact that the process can't start printing again from

where it has left which causes performance inefficiency.

4. Circular Wait

To violate circular wait, we can assign a priority number to each of the resource. A process can't

request for a lesser priority resource. This ensures that not a single process can request a resource

which is being utilized by some other process and no cycle will be formed.

Among all the methods, violating Circular wait is the only approach that can be implemented

practically.

Deadlock Avoidance:-

In deadlock avoidance, the request for any resource will be granted if the resulting state of the

system doesn't cause deadlock in the system. The state of the system will continuously be

checked for safe and unsafe states.

In order to avoid deadlocks, the process must tell OS, the maximum number of resources a

process can request to complete its execution.

The simplest and most useful approach states that the process should declare the maximum

number of resources of each type it may ever need. The Deadlock avoidance algorithm examines

the resource allocations so that there can never be a circular wait condition.

Safe and Unsafe States

The resource allocation state of a system can be defined by the instances of available and

allocated resources, and the maximum instance of the resources demanded by the processes.

A state of a system recorded at some random time is shown below.

Resources Assigned

Process Type 1 Type 2 Type 3 Type 4

A 3 0 2 2

B 0 0 1 1

C 1 1 1 0

D 2 1 4 0

Resources still needed

Process Type 1 Type 2 Type 3 Type 4

A 1 1 0 0

B 0 1 1 2

C 1 2 1 0

D 2 1 1 2

E = (7 6 8 4)

P = (6 2 8 3)

A = (1 4 0 1)

Above tables and vector E, P and A describes the resource allocation state of a system. There are

4 processes and 4 types of the resources in a system. Table 1 shows the instances of each

resource assigned to each process.

Table 2 shows the instances of the resources, each process still needs. Vector E is the

representation of total instances of each resource in the system.

Vector P represents the instances of resources that have been assigned to processes. Vector A

represents the number of resources that are not in use.

A state of the system is called safe if the system can allocate all the resources requested by all the

processes without entering into deadlock.

If the system cannot fulfill the request of all processes then the state of the system is called

unsafe.

The key of Deadlock avoidance approach is when the request is made for resources then the

request must only be approved in the case if the resulting state is also a safe state.

Banker's Algorithm:-

Banker's algorithm is a deadlock avoidance algorithm. It is named so because this algorithm is

used in banking systems to determine whether a loan can be granted or not.

Consider there are n account holders in a bank and the sum of the money in all of their accounts

is S. Every time a loan has to be granted by the bank, it subtracts the loan amount from the total

money the bank has. Then it checks if that difference is greater than S. It is done because, only

then, the bank would have enough money even if all the n account holders draw all their money

at once.

Banker's algorithm works in a similar way in computers.

Whenever a new process is created, it must specify the maximum instances of each resource type

that it needs, exactly.

Let us assume that there are n processes and m resource types. Some data structures that are used

to implement the banker's algorithm are:

1. Available

It is an array of length m. It represents the number of available resources of each type.

If Available[j] = k, then there are k instances available, of resource type R(j).

2. Max

It is an n x m matrix which represents the maximum number of instances of each resource that a

process can request. If Max[i][j] = k, then the process P(i) can request atmost k instances of

resource type R(j).

3. Allocation

It is an n x m matrix which represents the number of resources of each type currently allocated

to each process. If Allocation[i][j] = k, then process P(i) is currently allocated k instances

of resource type R(j).

4. Need

It is an n x m matrix which indicates the remaining resource needs of each process.

If Need[i][j] = k, then process P(i) may need k more instances of resource type R(j) to

complete its task.

Need[i][j] = Max[i][j] - Allocation [i][j]

Deadlock Detection and Recovery

In this approach, The OS doesn't apply any mechanism to avoid or prevent the deadlocks.

Therefore the system considers that the deadlock will definitely occur. In order to get rid of

deadlocks, The OS periodically checks the system for any deadlock. In case, it finds any of the

deadlock then the OS will recover the system using some recovery techniques.

The main task of the OS is detecting the deadlocks. The OS can detect the deadlocks with the

help of Resource allocation graph.

In single instanced resource types, if a cycle is being formed in the system then there will

definitely be a deadlock. On the other hand, in multiple instanced resource type graph, detecting

a cycle is not just enough. We have to apply the safety algorithm on the system by converting the

resource allocation graph into the allocation matrix and request matrix.

In order to recover the system from deadlocks, either OS considers resources or processes

For Resource

Preempt the resource

We can snatch one of the resources from the owner of the resource (process) and give it to the

other process with the expectation that it will complete the execution and will release this

resource sooner. Well, choosing a resource which will be snatched is going to be a bit difficult.

Rollback to a safe state

System passes through various states to get into the deadlock state. The operating system can

rollback the system to the previous safe state. For this purpose, OS needs to implement check

pointing at every state.

The moment, we get into deadlock, we will rollback all the allocations to get into the previous

safe state.

For Process

Kill a process

Killing a process can solve our problem but the bigger concern is to decide which process to kill.

Generally, Operating system kills a process which has done least amount of work until now.

Kill all process

This is not a suggestible approach but can be implemented if the problem becomes very serious.

Killing all process will lead to inefficiency in the system because all the processes will execute

again from starting.

UNIT-4

OS

Computer Memory:-

Computer memory can be defined as a collection of some data represented in the binary format.

A computer device that is capable to store any information or data temporally or permanently is

called storage device.

Storage Management:-

Memory management is the functionality of an operating system which handles or manages

primary memory and moves processes back and forth between main memory and disk during

execution. Memory management keeps track of each and every memory location, regardless of

either it is allocated to some process or it is free. It checks how much memory is to be allocated

to processes. It decides which process will get memory at what time. It tracks whenever some

memory gets freed or unallocated and correspondingly it updates the status.

The memory management method deals with allocation of finite amount of memory to the

requesting process. In ready state it is necessary that the process should have access to the certain

amount of memory. Memory is a long array of bytes. Each with its own address using read and

write statement the CPU and input/output device interact with the memory.

One of the main tasks of an operating system is to manage the computer’s memory. This

includes many responsibilities, including

 Being aware of what parts of the memory are in use and which parts are not.

 Allocating memory to processes when they request it and de-allocating memory when a

process releases its memory.

 Moving data from memory to disc, when the physical capacity becomes full, and vice

versa.

Address:- It is two types

1. Logical address:- Logical address are generated by the CPU. These address are defined

by CPU while writing any program generated by CPU.

2. Physical address:- The address of memory area where the user program actually resides

is called Physical address.

Address Binding Mechanism:- Memory consist of large array of words or bytes. Each

with its own address. The processor is to select one of the process from the queue and load into

memory as the process is executed. It access data and program from the memory.

User programs typically refer to memory addresses with symbolic names such as "i", "count",

and "average Temperature". These symbolic names must be mapped or bound to physical

memory addresses, which typically occurs in several stages:

Diagram shows the various stages of the binding processes and the units involved in each

stage:

Multistep processing of a user program

Compile Time - If it is known at compile time where a program will reside in physical

memory, then absolute code can be generated by the compiler, containing actual physical

addresses. However if the load address changes at some later time, then the program will have

to be recompiled. DOS .COM programs use compile time binding.

Load Time - If the location at which a program will be loaded is not known at compile time,

then the compiler must generate relocatable code, which references addresses relative to the

start of the program. If that starting address changes, then the program must be reloaded but

not recompiled.

Execution Time - If a program can be moved around in memory during the course of its

execution, then binding must be delayed until execution time. This requires special hardware,

and is the method implemented by most modern Operating System .

Dynamic loading:- Size of the process depend on the size of physical memory. Hence to

obtain the better utilization of the memory space dynamic loading is performed. The major

advantage of dynamic loading is that it never load any unused process. This method is useful

while handling the large amount of code.

Swapping:-

Swapping is a technique for making memory compact. It is a mechanism that is used to

temporarily swap processes out of the main memory to secondary memory, and this makes more

memory available for some other processes. At some later time, the system can swap back the

process from the secondary memory to the main memory.

Swapping does affect the performance of the system, but it helps in running multiple processes

parallelly. The total time taken by the swapping of a process includes the time it takes to move

the entire process to the secondary memory and then again to the main memory.

It is a method of taking out the current content of memory to backstore(disk) and bring the

content of backstore to main memory.

There are two operations in swapping method:-

1. Swap out(Read out):- take out to the current data from the main memory.

2. Swap in(Read in):- bring the data of new user into main memory.

Swapping of two processes using a disk as a backing store

Memory Management Scheme:-

Contiguous

Memory

Allocation

Bare Machine

Or

Single User

Resident Monitor

Or
Single Process

Monitor

Multiprogramm

ing

Memory Management

Scheme

Non- Contiguous

Memory

Allocation

Segmentati

on (user-

view)

Paging

(System

view)

Contiguous

Memory

Allocation

Bare Machine

Or

Single User

Resident Monitor

Or
Single Process

Monitor

Multiprogramm

ing

Contiguous Memory Allocation:-

In contiguous memory allocation, all the available memory space remain together in one place.

It means freely available memory partitions are not scattered here and there across the whole

memory space.

In the contiguous memory allocation, both the operating system and the user must reside in the

main memory. The main memory is divided into two portions one portion is for the operating

and other is for the user program.

In the contiguous memory allocation when any user process request for the memory a single

section of the contiguous memory block is given to that process according to its need. We can

achieve contiguous memory allocation by dividing memory into the fixed-sized partition.

A single process is allocated in that fixed sized single partition. But this will increase the degree

of multiprogramming means more than one process in the main memory that bounds the number

of fixed partition done in memory. Internal fragmentation increases because of the contiguous

memory allocation.

Non-contiguous memory allocation:-

In the non-contiguous memory allocation the available free memory space are scattered here

and there and all the free memory space is not at one place. So this is time-consuming.

In the non-contiguous memory allocation, a process will acquire the memory space but it is not

at one place it is at the different locations according to the process requirement.

This technique of non-contiguous memory allocation reduces the wastage of memory which

leads to internal and external fragmentation. This utilizes all the free memory space which is

created by a different process.

Difference between Contiguous and Non-contiguous Memory

Allocation :

S.NO.

CONTIGUOUS MEMORY

ALLOCATION

NON-CONTIGUOUS MEMORY

ALLOCATION

1.

Contiguous memory allocation

allocates consecutive blocks of
memory to a file/process.

Non-Contiguous memory allocation

allocates separate blocks of memory to a
file/process.

2. Faster in Execution. Slower in Execution.

3. It is easier for the OS to control. It is difficult for the OS to control.

4.

Overhead is minimum as not much
address translations are there while

executing a process.

More Overheads are there as there are

more address translations.

5.

Internal fragmentation occurs in

Contiguous memory allocation
method.

External fragmentation occurs in Non-
Contiguous memory allocation method.

6.

It includes single partition allocation

and multi-partition allocation. It includes paging and segmentation.

7. Wastage of memory is there. No memory wastage is there.

8.

In contiguous memory allocation,

swapped-in processes are arranged in

the originally allocated space.

In non-contiguous memory allocation,

swapped-in processes can be arranged

in any place in the memory.

Multiprogramming:-

In the multiprogramming, the multiple users can share the memory simultaneously. By

multiprogramming we mean there will be more than one process in the main memory and if the

running process wants to wait for an event like I/O then instead of sitting ideal CPU will make a

context switch and will pick another process.

Multiprogramming are two types:-

1. Fixed (Static)

2. Variable (Dynamic)

Fixed sized partition (Static) :- In the fixed sized partition the system divides memory into

fixed size partition (may or may not be of the same size) here entire partition is allowed to a

process and if there is some wastage inside the partition is allocated to a process and if there is

some wastage inside the partition then it is called internal fragmentation.

In this technique, the main memory is divided into partitions of equal or different sizes. The

operating system always resides in the first partition while the other partitions can be used to

store user processes. The memory is assigned to the processes in contiguous way.

In fixed partitioning,

1. The partitions cannot overlap.

2. A process must be contiguously present in a partition for the execution.

There are various cons of using this technique.

1. Internal Fragmentation

If the size of the process is lesser then the total size of the partition then some size of the partition

get wasted and remain unused. This is wastage of the memory and called internal fragmentation.

As shown in the image below, the 4 MB partition is used to load only 3 MB process and the

remaining 1 MB got wasted.

2. External Fragmentation

The total unused space of various partitions cannot be used to load the processes even though

there is space available but not in the contiguous form.

As shown in the image below, the remaining 1 MB space of each partition cannot be used as a

unit to store a 4 MB process. Despite of the fact that the sufficient space is available to load the

process, process will not be loaded.

3. Limitation on the size of the process

If the process size is larger than the size of maximum sized partition then that process cannot be

loaded into the memory. Therefore, a limitation can be imposed on the process size that is it

cannot be larger than the size of the largest partition.

4. Degree of multiprogramming is less

By Degree of multi programming, we simply mean the maximum number of processes that can

be loaded into the memory at the same time. In fixed partitioning, the degree of

multiprogramming is fixed and very less due to the fact that the size of the partition cannot be

varied according to the size of processes.

Variable (Dynamic) Partitioning:-

Dynamic partitioning tries to overcome the problems caused by fixed partitioning. In this

technique, the partition size is not declared initially. It is declared at the time of process loading.

The first partition is reserved for the operating system. The remaining space is divided into parts.

The size of each partition will be equal to the size of the process. The partition size varies

according to the need of the process so that the internal fragmentation can be avoided.

Advantages of Dynamic Partitioning over fixed partitioning

1. No Internal Fragmentation

Given the fact that the partitions in dynamic partitioning are created according to the need of the

process, It is clear that there will not be any internal fragmentation because there will not be any

unused remaining space in the partition.

2. No Limitation on the size of the process

In Fixed partitioning, the process with the size greater than the size of the largest partition could

not be executed due to the lack of sufficient contiguous memory. Here, In Dynamic partitioning,

the process size can't be restricted since the partition size is decided according to the process

size.

3. Degree of multiprogramming is dynamic

Due to the absence of internal fragmentation, there will not be any unused space in the partition

hence more processes can be loaded in the memory at the same time.

Disadvantages of dynamic partitioning

External Fragmentation

Absence of internal fragmentation doesn't mean that there will not be external fragmentation.

Let's consider three processes P1 (1 MB) and P2 (3 MB) and P3 (1 MB) are being loaded in the

respective partitions of the main memory.

After some time P1 and P3 got completed and their assigned space is freed. Now there are two

unused partitions (1 MB and 1 MB) available in the main memory but they cannot be used to

load a 2 MB process in the memory since they are not contiguously located.

The rule says that the process must be contiguously present in the main memory to get executed.

We need to change this rule to avoid external fragmentation.

File System

File system is the part of the operating system which is responsible for file management. It

provides a mechanism to store the data and access to the file contents including data and

programs. Some Operating systems treats everything as a file for example Ubuntu.

A file is a collection of correlated information which is recorded on secondary or non-volatile

storage like magnetic disks, optical disks, and tapes. It is a method of data collection that is used

as a medium for giving input and receiving output from that program.

In general, a file is a sequence of bits, bytes, or records whose meaning is defined by the file

creator and user. Every File has a logical location where they are located for storage and

retrieval.

The File system takes care of the following issues

o File Structure

We have seen various data structures in which the file can be stored. The task of the file

system is to maintain an optimal file structure.

o Recovering Free space

Whenever a file gets deleted from the hard disk, there is a free space created in the disk.

There can be many such spaces which need to be recovered in order to reallocate them to

other files.

o Disk space assignment to the files

The major concern about the file is deciding where to store the files on the hard disk.

There are various disks scheduling algorithm.

o Tracking data location

A File may or may not be stored within only one block. It can be stored in the non

contiguous blocks on the disk. We need to keep track of all the blocks on which the part

of the files reside.

File Access Methods in Operating System

When a file is used, information is read and accessed into computer memory and there are several

ways to access this information of the file. Some systems provide only one access method for files.

Other systems, such as those of IBM, support many access methods, and choosing the right one for

a particular application is a major design problem.

There are three ways to access a file into a computer system: Sequential-Access, Direct Access,

Index sequential Method.

Sequential Access –

It is the simplest access method. Information in the file is processed in order, one record after the

other. This mode of access is by far the most common; for example, editor and compiler usually

access the file in this fashion.

Read and write make up the bulk of the operation on a file. A read operation -read next- read the

next position of the file and automatically advance a file pointer, which keeps track I/O location.

Similarly, for the write write next append to the end of the file and advance to the newly written

material.

Most of the operating systems access the file sequentially. In other words, we can say that most

of the files need to be accessed sequentially by the operating system.

In sequential access, the OS read the file word by word. A pointer is maintained which initially

points to the base address of the file. If the user wants to read first word of the file then the

pointer provides that word to the user and increases its value by 1 word. This process continues

till the end of the file.

Key points:

 Data is accessed one record right after another record in an order.

 When we use read command, it move ahead pointer by one

 When we use write command, it will allocate memory and move the pointer to the end of

the file

 Such a method is reasonable for tape.

Direct Access –

Another method is direct access method also known as relative access method. A filed-length

logical record that allows the program to read and write record rapidly. in no particular order.

The direct access is based on the disk model of a file since disk allows random access to any file

block. For direct access, the file is viewed as a numbered sequence of block or record. Thus, we

may read block 14 then block 59 and then we can write block 17. There is no restriction on the

order of reading and writing for a direct access file.

A block number provided by the user to the operating system is normally a relative block number,

the first relative block of the file is 0 and then 1 and so on.

The Direct Access is mostly required in the case of database systems. In most of the cases, we

need filtered information from the database. The sequential access can be very slow and

inefficient in such cases.

Suppose every block of the storage stores 4 records and we know that the record we needed is

stored in 10th block. In that case, the sequential access will not be implemented because it will

traverse all the blocks in order to access the needed record.

Direct access will give the required result despite of the fact that the operating system has to

perform some complex tasks such as determining the desired block number. However, that is

generally implemented in database applications.

Index sequential method –

It is the other method of accessing a file which is built on the top of the direct access method.

These methods construct an index for the file. The index, like an index in the back of a book,

contains the pointer to the various blocks. To find a record in the file, we first search the index

and then by the help of pointer we access the file directly.

 Provides solutions to problems of contiguous and linked allocation.

 A index block is created having all pointers to files.

 Each file has its own index block which stores the addresses of disk space occupied by

the file.

 Directory contains the addresses of index blocks of files.

Key points:

 It is built on top of Sequential access.

 It control the pointer by using index.

Directory Structure:-

Directory can be defined as the listing of the related files on the disk. The directory may store

some or the entire file attributes.

To get the benefit of different file systems on the different operating systems, A hard disk can be

divided into the number of partitions of different sizes. The partitions are also called volumes or

mini disks.

Each partition must have at least one directory in which, all the files of the partition can be listed.

A directory entry is maintained for each file in the directory which stores all the information

related to that file.

A directory can be viewed as a file which contains the Meta data of the bunch of files.

A directory is a container that is used to contain folders and file. It organizes files and folders into

a hierarchical manner.

Every Directory supports a number of common operations on the file:

1. File Creation

2. Search for the file

3. File deletion

4. Renaming the file

5. Traversing Files

6. Listing of files

1. Single Level Directory

The simplest method is to have one big list of all the files on the disk. The entire system

will contain only one directory which is supposed to mention all the files present in the

file system. The directory contains one entry per each file present on the file system.

This type of directories can be used for a simple system.

Advantages

1. Implementation is very simple.

2. If the sizes of the files are very small then the searching becomes faster.

3. File creation, searching, deletion is very simple since we have only one directory.

Disadvantages

1. We cannot have two files with the same name.

2. The directory may be very big therefore searching for a file may take so much time.

3. Protection cannot be implemented for multiple users.

4. There are no ways to group same kind of files.

5. Choosing the unique name for every file is a bit complex and limits the number of files in

the system because most of the Operating System limits the number of characters used to

construct the file name.

Two Level Directory

In two level directory systems, we can create a separate directory for each user. There is

one master directory which contains separate directories dedicated to each user. For each

user, there is a different directory present at the second level, containing group of user's

file. The system doesn't let a user to enter in the other user's directory without permission.

Characteristics of two level directory system

1. Each files has a path name as /User-name/directory-name/

2. Different users can have the same file name.

3. Searching becomes more efficient as only one user's list needs to be traversed.

4. The same kind of files cannot be grouped into a single directory for a particular user.

Every Operating System maintains a variable as PWD which contains the present directory name

(present user name) so that the searching can be done appropriately.

Tree Structured Directory

In Tree structured directory system, any directory entry can either be a file or sub directory. Tree

structured directory system overcomes the drawbacks of two level directory system. The similar

kind of files can now be grouped in one directory.

Each user has its own directory and it cannot enter in the other user's directory. However, the

user has the permission to read the root's data but he cannot write or modify this. Only

administrator of the system has the complete access of root directory.

Searching is more efficient in this directory structure. The concept of current working directory

is used. A file can be accessed by two types of path, either relative or absolute.

Absolute path is the path of the file with respect to the root directory of the system while relative

path is the path with respect to the current working directory of the system. In tree structured

directory systems, the user is given the privilege to create the files as well as directories.

Permissions on the file and directory

A tree structured directory system may consist of various levels therefore there is a set of

permissions assigned to each file and directory.

The permissions are R W X which are regarding reading, writing and the execution of the files

or directory. The permissions are assigned to three types of users: owner, group and others.

There is a identification bit which differentiate between directory and file. For a directory, it

is d and for a file, it is dot (.)

The following snapshot shows the permissions assigned to a file in a Linux based system. Initial

bit d represents that it is a directory.

Acyclic-Graph Structured Directories

The tree structured directory system doesn't allow the same file to exist in multiple directories

therefore sharing is major concern in tree structured directory system. We can provide sharing by

making the directory an acyclic graph. In this system, two or more directory entry can point to

the same file or sub directory. That file or sub directory is shared between the two directory

entries.

These kinds of directory graphs can be made using links or aliases. We can have multiple paths

for a same file. Links can either be symbolic (logical) or hard link (physical).

If a file gets deleted in acyclic graph structured directory system, then

1. In the case of soft link, the file just gets deleted and we are left with a dangling pointer.

2. In the case of hard link, the actual file will be deleted only if all the references to it gets

deleted.

General graph directory structure –

In general graph directory structure, cycles are allowed within a directory structure where

multiple directories can be derived from more than one parent directory.

The main problem with this kind of directory structure is to calculate total size or space that has

been taken by the files and directories.

Advantages:

 It allows cycles.

 It is more flexible than other directories structure.

Disadvantages:

 It is more costly than others.

 It needs garbage collection.

Structures of Directory in Operating System

Allocation Method

The allocation method defines how the files are stored in the disk blocks. The direct access

nature of the disks gives us the flexibility to implement the files. In many cases, different files or

many files are stored on the same disk. The main problem that occurs in the operating system is

that how we allocate the spaces to these files so that the utilization of disk is efficient and the

quick access to the file is possible. There are mainly three methods of file allocation in the disk.

Each method has its advantages and disadvantages. Mainly a system uses one method for all files

within the system.

Contiguous Allocation: – Contiguous allocation is one of the most used methods for

allocation. Contiguous allocation means we allocate the block in such a manner, so that in the

hard disk, all the blocks get the contiguous physical block.

We can see in the below figure that in the directory, we have three files. In the table, we have

mentioned the starting block and the length of all the files. We can see in the table that for each

file, we allocate a contiguous block.

Example of contiguous allocation

We can see in the given diagram, that there is a file. The name of the file is ‘mail.’ The file starts

from the 19th block and the length of the file is 6. So, the file occupies 6 blocks in a contiguous

manner. Thus, it will hold blocks 19, 20, 21, 22, 23, 24.

Advantages of Contiguous Allocation

The advantages of contiguous allocation are:

1. The contiguous allocation method gives excellent read performance.

2. Contiguous allocation is easy to implement.

3. The contiguous allocation method supports both types of file access methods that are sequential

access and direct access.

4. The Contiguous allocation method is fast because, in this method number of seeks is less due to

the contiguous allocation of file blocks.

Disadvantages of Contiguous allocation

The disadvantages of contiguous allocation method are:

1. In the contiguous allocation method, sometimes disk can be fragmented.

2. In this method, it is difficult to increase the size of the file due to the availability of the

contiguous memory block.

Linked List Allocation

The linked list allocation method overcomes the drawbacks of the contiguous allocation method.

In this file allocation method, each file is treated as a linked list of disks blocks. In the linked list

allocation method, it is not required that disk blocks assigned to a specific file are in the

contiguous order on the disk. The directory entry comprises of a pointer for starting file block

and also for the ending file block. Each disk block that is allocated or assigned to a file consists

of a pointer, and that pointer point the next block of the disk, which is allocated to the same file.

Example of linked list allocation

We can see in the below figure that we have a file named ‘jeep.’ The value of the start is 9. So,

we have to start the allocation from the 9th block, and blocks are allocated in a random manner.

The value of the end is 25. It means the allocation is finished on the 25th block. We can see in the

below figure that the block (25) comprised of -1, which means a null pointer, and it will not point

to another block.

Advantages of Linked list allocation

There are various advantages of linked list allocation:

1. In liked list allocation, there is no external fragmentation. Due to this, we can utilize the memory

better.

2. In linked list allocation, a directory entry only comprises of the starting block address.

3. The linked allocation method is flexible because we can quickly increase the size of the file

because, in this to allocate a file, we do not require a chunk of memory in a contiguous form.

Disadvantages of Linked list Allocation

There are various disadvantages of linked list allocation:

1. Linked list allocation does not support direct access or random access.

2. In linked list allocation, we need to traverse each block.

3. If the pointer in the linked list break in linked list allocation, then the file gets corrupted.

4. In the disk block for the pointer, it needs some extra space.

Indexed Allocation

 The Indexed allocation method is another method that is used for file allocation. In the index

allocation method, we have an additional block, and that block is known as the index block. For

each file, there is an individual index block. In the index block, the ith entry holds the disk

address of the ith file block. We can see in the below figure that the directory entry comprises of

the address of the index block.

Instead of maintaining a file allocation table of all the disk pointers, Indexed allocation scheme

stores all the disk pointers in one of the blocks called as indexed block. Indexed block doesn't

hold the file data, but it holds the pointers to all the disk blocks allocated to that particular file.

Directory entry will only contain the index block address.

or

Advantages of Index Allocation
The advantages of index allocation are:

1. The index allocation method solves the problem of external fragmentation.

2. Index allocation provides direct access.

Disadvantages of Index Allocation

The disadvantages of index allocation are:

1. In index allocation, pointer overhead is more.

2. We can lose the entire file if an index block is not correct.

3. It is totally a wastage to create an index for a small file.

A single index block cannot hold all the pointer for files with large sizes.

To resolve this problem, there are various mechanism which we can use:

1. Linked scheme

2. Multilevel Index

3. Combined Scheme

1. Linked Scheme: – In the linked scheme, to hold the pointer, two or more than two index

blocks are linked together. Each block contains the address of the next index block or a pointer.

2. Multilevel Index: – In the multilevel index, to point the second-level index block, we use a

first-level index block that in turn points to the blocks of the disk, occupied by the file. We can

extend this up to 3 or more than 3 levels depending on the maximum size of the file.

3. Combined Scheme: – In a combined scheme, there is a special block which is called an

information node (Inode). The inode comprises of all the information related to the file like

authority, name, size, etc. To store the disk block addresses that contain the actual file, the

remaining space of inode is used. In inode, the starting pointer is used to point the direct blocks.

This means the pointer comprises of the addresses of the disk blocks, which consist of the file

data. To indicate the indirect blocks, the next few pointers are used. The indirect blocks are of

three types, which are single indirect, double indirect, and triple indirect.

Protection in File System:-

In computer systems, alot of user’s information is stored, the objective of the operating system is to

keep safe the data of the user from the improper access to the system. Protection can be provided in

number of ways. For a single laptop system, we might provide protection by locking the computer

in a desk drawer or file cabinet. For multi-user systems, different mechanisms are used for the

protection.

Types of Access :

The files which have direct access of the any user have the need of protection. The files which are

not accessible to other users doesn’t require any kind of protection. The mechanism of the

protection provide the facility of the controlled access by just limiting the types of access to the

file. Access can be given or not given to any user depends on several factors, one of which is the

type of access required. Several different types of operations can be controlled:

 Read – Reading from a file.

 Write – Writing or rewriting the file.

 Execute – Loading the file and after loading the execution process starts.

 Append – Writing the new information to the already existing file, editing must be end at

the end of the existing file.

 Delete – Deleting the file which is of no use and using its space for the another data.

 List – List the name and attributes of the file.

Operations like renaming, editing the existing file, copying; these can also be controlled. There are

many protection mechanism. each of them mechanism have different advantages and

disadvantages and must be appropriate for the intended application.

Access Control :

There are different methods used by different users to access any file. The general way of

protection is to associate identity-dependent access with all the files and directories an list

called access-control list (ACL) which specify the names of the users and the types of access

associate with each of the user. The main problem with the access list is their length. If we want to

allow everyone to read a file, we must list all the users with the read access. This technique has two

undesirable consequences:

Constructing such a list may be tedious and unrewarding task, especially if we do not know in

advance the list of the users in the system.

Previously, the entry of the any directory is of the fixed size but now it changes to the variable size

which results in the complicates space management. These problems can be resolved by use of a

condensed version of the access list. To condense the length of the access-control list, many

systems recognize three classification of users in connection with each file:

 Owner – Owner is the user who has created the file.

 Group – A group is a set of members who has similar needs and they are sharing the same

file.

 Universe – In the system, all other users are under the category called universe.

https://www.geeksforgeeks.org/access-lists-acl/

The most common recent approach is to combine access-control lists with the normal general

owner, group, and universe access control scheme. For example: Solaris uses the three categories

of access by default but allows access-control lists to be added to specific files and directories

when more fine-grained access control is desired.

Other Protection Approaches:

The access to any system is also controlled by the password. If the use of password are is random

and it is changed often, this may be result in limit the effective access to a file.

The use of passwords has a few disadvantages:

 The number of passwords are very large so it is difficult to remember the large passwords.

 If one password is used for all the files, then once it is discovered, all files are accessible;

protection is on all-or-none basis.

Disk scheduling:-

 As we know, a process needs two type of time, CPU time and IO time. For I/O, it

requests the Operating system to access the disk.

 However, the operating system must be fare enough to satisfy each request and at the

same time, operating system must maintain the efficiency and speed of process execution.

 The technique that operating system uses to determine the request which is to be satisfied

next is called disk scheduling.

Let's discuss some important terms related to disk scheduling.

 Seek Time - Seek time is the time taken in locating the disk arm to a specified track

where the read/write request will be satisfied.

 Rotational Latency - It is the time taken by the desired sector to rotate itself to the

position from where it can access the R/W heads.

 Transfer Time - It is the time taken to transfer the data.

 Disk Access Time - Disk access time is given as,

 Disk Access Time = Rotational Latency + Seek Time + Transfer Time

 Disk Response Time - It is the average of time spent by each request waiting for the IO

operation.

 Purpose of Disk Scheduling - The main purpose of disk scheduling algorithm is to select

a disk request from the queue of IO requests and decide the schedule when this request

will be processed.

Goal of Disk Scheduling Algorithm

 Fairness

 High throughout

 Minimal traveling head time

Disk Scheduling Algorithms:-

 The list of various disks scheduling algorithm is given below. Each algorithm is carrying

some advantages and disadvantages. The limitation of each algorithm leads to the

evolution of a new algorithm.

 FCFS scheduling algorithm

 SSTF (shortest seek time first) algorithm

 SCAN scheduling

 C-SCAN scheduling

 LOOK Scheduling

 C-LOOK scheduling

FCFS Scheduling Algorithm:-

 It is the simplest Disk Scheduling algorithm. It services the IO requests in the order in

which they arrive. There is no starvation in this algorithm, every request is serviced.

Disadvantages

 The scheme does not optimize the seek time.

 The request may come from different processes therefore there is the possibility of

inappropriate movement of the head.

Example:- Consider the following disk request sequence for a disk with 100 tracks 45, 21,

67, 90, 4, 50, 89, 52, 61, 87, 25 Head pointer starting at 50 and moving in left direction. Find

the number of head movements in cylinders using FCFS scheduling.

Solution:- Number of cylinders moved by the head

= (50-45)+(45-21)+(67-21)+(90-67)+(90-4)+(50-4)+(89-50)+(61-52)+(87-61)+(87-25)

= 5 + 24 + 46 + 23 + 86 + 46 + 49 + 9 + 26 + 62

= 376

C-SCAN Algorithm:-

In C-SCAN algorithm, the arm of the disk moves in a particular direction servicing requests until

it reaches the last cylinder, then it jumps to the last cylinder of the opposite direction without

servicing any request then it turns back and start moving in that direction servicing the remaining

requests.

Example: - Consider the following disk request sequence for a disk with 100 tracks98,

137, 122, 183, 14, 133, 65, 78 Head pointer starting at 54 and moving in left direction. Find

the number of head movements in cylinders using C-SCAN scheduling.

Solution:- No. of cylinders crossed = 40 + 14 + 199 + 16 + 46 + 4 + 11 + 24 + 20

+ 13 = 387

Page Replacement Algorithms in Operating Systems

In an operating system that uses paging for memory management, a page replacement algorithm

is needed to decide which page needs to be replaced when new page comes in.

Page Fault – A page fault happens when a running program accesses a memory page that is

mapped into the virtual address space, but not loaded in physical memory.

Since actual physical memory is much smaller than virtual memory, page faults happen. In case

of page fault, Operating System might have to replace one of the existing pages with the newly

needed page. Different page replacement algorithms suggest different ways to decide which page

to replace. The target for all algorithms is to reduce the number of page faults.

Page Replacement Algorithms :

 First In First Out (FIFO) –

This is the simplest page replacement algorithm. In this algorithm, the operating system

keeps track of all pages in the memory in a queue, the oldest page is in the front of the queue.

When a page needs to be replaced page in the front of the queue is selected for removal.

Example-1Consider page reference string 1, 3, 0, 3, 5, 6 with 3 page frames. Find number of

page faults.

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —> 3

Page Faults.

when 3 comes, it is already in memory so —> 0 Page Faults.

Then 5 comes, it is not available in memory so it replaces the oldest page slot i.e 1. —>1

Page Fault.

6 comes, it is also not available in memory so it replaces the oldest page slot i.e 3 —>1 Page

Fault.

Finally when 3 come it is not avilable so it replaces 0 1 page fault

Belady’s anomaly – Belady’s anomaly proves that it is possible to have more page faults

when increasing the number of page frames while using the First in First Out (FIFO) page

replacement algorithm. For example, if we consider reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1,

0, 4 and 3 slots, we get 9 total page faults, but if we increase slots to 4, we get 10 page faults.

https://www.geeksforgeeks.org/operating-system-beladys-anomaly/

Optimal Page replacement –

In this algorithm, pages are replaced which would not be used for the longest duration of

time in the future.

Example-2:Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page frame.

Find number of page fault.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page

faults

0 is already there so —> 0 Page fault.

when 3 came it will take the place of 7 because it is not used for the longest duration of time

in the future.—>1 Page fault.

0 is already there so —> 0 Page fault..

4 will takes place of 1 —> 1 Page Fault.

Now for the further page reference string —> 0 Page fault because they are already available

in the memory.

Optimal page replacement is perfect, but not possible in practice as the operating system

cannot know future requests. The use of Optimal Page replacement is to set up a benchmark

so that other replacement algorithms can be analyzed against it.

 Least Recently Used –

In this algorithm page will be replaced which is least recently used.

Example-3Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 with 4 page

frames.Find number of page faults.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page

faults

0 is already their so —> 0 Page fault.

when 3 came it will take the place of 7 because it is least recently used —>1 Page fault

0 is already in memory so —> 0 Page fault.

4 will takes place of 1 —> 1 Page Fault

Now for the further page reference string —> 0 Page fault because they are already available

in the memory.

Allocation of frames in Operating System

An important aspect of operating systems, virtual memory is implemented using demand paging.

Demand paging necessitates the development of a page-replacement algorithm and a frame

allocation algorithm. Frame allocation algorithms are used if you have multiple processes; it

helps decide how many frames to allocate to each process.

There are various constraints to the strategies for the allocation of frames:

https://www.geeksforgeeks.org/virtual-memory-operating-systems/
https://www.geeksforgeeks.org/operating-system-page-replacement-algorithm/

 You cannot allocate more than the total number of available frames.

 At least a minimum number of frames should be allocated to each process. This constraint is

supported by two reasons. The first reason is, as less number of frames are allocated, there is

an increase in the page fault ratio, decreasing the performance of the execution of the

process. Secondly, there should be enough frames to hold all the different pages that any

single instruction can reference.

Frame allocation algorithms –

The two algorithms commonly used to allocate frames to a process are:

1. Equal allocation: In a system with x frames and y processes, each process gets equal

number of frames, i.e. x/y. For instance, if the system has 48 frames and 9 processes, each

process will get 5 frames. The three frames which are not allocated to any process can be

used as a free-frame buffer pool.

 Disadvantage: In systems with processes of varying sizes, it does not make much sense

to give each process equal frames. Allocation of a large number of frames to a small

process will eventually lead to the wastage of a large number of allocated unused frames.

2. Proportional allocation: Frames are allocated to each process according to the process size.

For a process pi of size si, the number of allocated frames is ai = (si/S)*m, where S is the sum

of the sizes of all the processes and m is the number of frames in the system. For instance, in

a system with 62 frames, if there is a process of 10KB and another process of 127KB, then

the first process will be allocated (10/137)*62 = 4 frames and the other process will get

(127/137)*62 = 57 frames.

 Advantage: All the processes share the available frames according to their needs, rather

than equally.

Global vs Local Allocation –

The number of frames allocated to a process can also dynamically change depending on whether

you have used global replacement or local replacement for replacing pages in case of a page

fault.

1. Local replacement: When a process needs a page which is not in the memory, it can bring

in the new page and allocate it a frame from its own set of allocated frames only.

 Advantage: The pages in memory for a particular process and the page fault ratio is

affected by the paging behavior of only that process.

 Disadvantage: A low priority process may hinder a high priority process by not making

its frames available to the high priority process.

2. Global replacement: When a process needs a page which is not in the memory, it can bring

in the new page and allocate it a frame from the set of all frames, even if that frame is

currently allocated to some other process; that is, one process can take a frame from another.

 Advantage: Does not hinder the performance of processes and hence results in greater

system throughput.

 Disadvantage: The page fault ratio of a process can not be solely controlled by the

process itself. The pages in memory for a process depends on the paging behavior of

other processes as well.

UNIT-5

Cyber Security Goals

The objective of Cybersecurity is to protect information from being stolen, compromised or

attacked. Cybersecurity can be measured by at least one of three goals-

1. Protect the confidentiality of data.

2. Preserve the integrity of data.

3. Promote the availability of data for authorized users.

These goals form the confidentiality, integrity, availability (CIA) triad, the basis of all

security programs. The CIA triad is a security model that is designed to guide policies for

information security within the premises of an organization or company. This model is
also referred to as the AIC (Availability, Integrity, and Confidentiality) triad to avoid

the confusion with the Central Intelligence Agency. The elements of the triad are

considered the three most crucial components of security.

The CIA criteria are one that most of the organizations and companies use when they

have installed a new application, creates a database or when guaranteeing access to some
data. For data to be completely secure, all of these security goals must come into effect.

These are security policies that all work together, and therefore it can be wrong to

overlook one policy.

The CIA triad are-

1. Confidentiality

Confidentiality is roughly equivalent to privacy and avoids the unauthorized disclosure of
information. It involves the protection of data, providing access for those who are

allowed to see it while disallowing others from learning anything about its content. It

prevents essential information from reaching the wrong people while making sure that the

right people can get it. Data encryption is a good example to ensure confidentiality.

Tools for Confidentiality

Encryption

Encryption is a method of transforming information to make it unreadable for
unauthorized users by using an algorithm. The transformation of data uses a secret key

(an encryption key) so that the transformed data can only be read by using another secret

key (decryption key). It protects sensitive data such as credit card numbers by encoding

and transforming data into unreadable cipher text. This encrypted data can only be read
by decrypting it. Asymmetric-key and symmetric-key are the two primary types of

encryption.

Access control

Access control defines rules and policies for limiting access to a system or to physical or

virtual resources. It is a process by which users are granted access and certain privileges
to systems, resources or information. In access control systems, users need to present

credentials before they can be granted access such as a person's name or a computer's

serial number. In physical systems, these credentials may come in many forms, but

credentials that can't be transferred provide the most security.

Authentication

An authentication is a process that ensures and confirms a user's identity or role that

someone has. It can be done in a number of different ways, but it is usually based on a

combination of-

o something the person has (like a smart card or a radio key for storing secret keys),

o something the person knows (like a password),

o something the person is (like a human with a fingerprint).

Authentication is the necessity of every organizations because it enables organizations to

keep their networks secure by permitting only authenticated users to access its protected

resources. These resources may include computer systems, networks, databases, websites
and other network-based applications or services.

Authorization

Authorization is a security mechanism which gives permission to do or have something.

It is used to determine a person or system is allowed access to resources, based on an
access control policy, including computer programs, files, services, data and application

features. It is normally preceded by authentication for user identity verification. System

administrators are typically assigned permission levels covering all system and user

resources. During authorization, a system verifies an authenticated user's access rules and
either grants or refuses resource access.

Physical Security

Physical security describes measures designed to deny the unauthorized access of IT

assets like facilities, equipment, personnel, resources and other properties from damage.
It protects these assets from physical threats including theft, vandalism, fire and natural

disasters.

2. Integrity

Integrity refers to the methods for ensuring that data is real, accurate and safeguarded
from unauthorized user modification. It is the property that information has not be altered

in an unauthorized way, and that source of the information is genuine.

Tools for Integrity

Backups

Backup is the periodic archiving of data. It is a process of making copies of data or data

files to use in the event when the original data or data files are lost or destroyed. It is also

used to make copies for historical purposes, such as for longitudinal studies, statistics or
for historical records or to meet the requirements of a data retention policy. Many

applications especially in a Windows environment, produce backup files using the .BAK

file extension.

Checksums

A checksum is a numerical value used to verify the integrity of a file or a data transfer. In
other words, it is the computation of a function that maps the contents of a file to a

numerical value. They are typically used to compare two sets of data to make sure that

they are the same. A checksum function depends on the entire contents of a file. It is

designed in a way that even a small change to the input file (such as flipping a single bit)
likely to results in different output value.

Data Correcting Codes

It is a method for storing data in such a way that small changes can be easily detected and

automatically corrected.

3. Availability

Availability is the property in which information is accessible and modifiable in a timely
fashion by those authorized to do so. It is the guarantee of reliable and constant access to

our sensitive data by authorized people.

Tools for Availability

o Physical Protections

o Computational Redundancies

Physical Protections

Physical safeguard means to keep information available even in the event of physical
challenges. It ensure sensitive information and critical information technology are housed

in secure areas.

Computational redundancies

It is applied as fault tolerant against accidental faults. It protects computers and storage
devices that serve as fallbacks in the case of failures.

Security:-

Security refers to providing a protection system to computer system resources such as CPU,

memory, disk, software programs and most importantly data/information stored in the computer

system. If a computer program is run by an unauthorized user, then he/she may cause severe

damage to computer or data stored in it. So a computer system must be protected against
unauthorized access, malicious access to system memory, viruses, worms etc. We're going to

discuss following topics in this chapter.

 Authentication

 One Time passwords

 Program Threats

 System Threats

 Computer Security Classifications

Authentication

Authentication refers to identifying each user of the system and associating the executing

programs with those users. It is the responsibility of the Operating System to create a protection

system which ensures that a user who is running a particular program is authentic. Operating

Systems generally identifies/authenticates users using following three ways −

 Username / Password − User need to enter a registered username and password with
Operating system to login into the system.

 User card/key − User need to punch card in card slot, or enter key generated by key

generator in option provided by operating system to login into the system.

 User attribute - fingerprint/ eye retina pattern/ signature − User need to pass his/her
attribute via designated input device used by operating system to login into the system.

One Time passwords

One-time passwords provide additional security along with normal authentication. In One-Time

Password system, a unique password is required every time user tries to login into the system.

Once a one-time password is used, then it cannot be used again. One-time password are
implemented in various ways.

 Random numbers − Users are provided cards having numbers printed along with
corresponding alphabets. System asks for numbers corresponding to few alphabets

randomly chosen.

 Secret key − User are provided a hardware device which can create a secret id mapped
with user id. System asks for such secret id which is to be generated every time prior to

login.

 Network password − Some commercial applications send one-time passwords to user
on registered mobile/ email which is required to be entered prior to login.

Program Threats

Operating system's processes and kernel do the designated task as instructed. If a user program

made these process do malicious tasks, then it is known as Program Threats. One of the

common example of program threat is a program installed in a computer which can store and
send user credentials via network to some hacker. Following is the list of some well-known

program threats.

 Trojan Horse − Such program traps user login credentials and stores them to send to
malicious user who can later on login to computer and can access system resources.

 Trap Door − If a program which is designed to work as required, have a security hole in

its code and perform illegal action without knowledge of user then it is called to have a

trap door.

 Logic Bomb − Logic bomb is a situation when a program misbehaves only when certain
conditions met otherwise it works as a genuine program. It is harder to detect.

 Virus − Virus as name suggest can replicate themselves on computer system. They are
highly dangerous and can modify/delete user files, crash systems. A virus is generatlly a

small code embedded in a program. As user accesses the program, the virus starts

getting embedded in other files/ programs and can make system unusable for user

System Threats

System threats refers to misuse of system services and network connections to put user in
trouble. System threats can be used to launch program threats on a complete network called as

program attack. System threats creates such an environment that operating system resources/

user files are misused. Following is the list of some well-known system threats.

 Worm − Worm is a process which can choked down a system performance by using
system resources to extreme levels. A Worm process generates its multiple copies where

each copy uses system resources, prevents all other processes to get required resources.

Worms processes can even shut down an entire network.

 Port Scanning − Port scanning is a mechanism or means by which a hacker can detects
system vulnerabilities to make an attack on the system.

 Denial of Service − Denial of service attacks normally prevents user to make legitimate
use of the system. For example, a user may not be able to use internet if denial of service

attacks browser's content settings.

Computer Security Classifications:-

As per the U.S. Department of Defense Trusted Computer System's Evaluation Criteria there

are four security classifications in computer systems: A, B, C, and D. This is widely used

specifications to determine and model the security of systems and of security solutions.

Following is the brief description of each classification.

S.N. Classification Type & Description

1
Type A

Highest Level. Uses formal design specifications and verification techniques. Grants a

high degree of assurance of process security.

2
Type B

Provides mandatory protection system. Have all the properties of a class C2 system.

Attaches a sensitivity label to each object. It is of three types.

 B1 − Maintains the security label of each object in the system. Label is used for
making decisions to access control.

 B2 − Extends the sensitivity labels to each system resource, such as storage
objects, supports covert channels and auditing of events.

 B3 − Allows creating lists or user groups for access-control to grant access or

revoke access to a given named object.

3
Type C

Provides protection and user accountability using audit capabilities. It is of two types.

 C1 − Incorporates controls so that users can protect their private information and
keep other users from accidentally reading / deleting their data. UNIX versions
are mostly Cl class.

 C2 − Adds an individual-level access control to the capabilities of a Cl level

system.

4
Type D

Lowest level. Minimum protection. MS-DOS, Window 3.1 fall in this category.

Threat Monitoring

■ Check for suspicious patterns of activity – i.e., several incorrect password attempts may signal

password guessing.

■ Audit log – records the time, user, and type of all accesses to an object; useful for recovery

from a violation and developing better security measures.

 ■ Scan the system periodically for security holes; done when the computer is relatively unused.

Check for:

✦ Short or easy-to-guess passwords

✦ Unauthorized set-uid programs

✦ Unauthorized programs in system directories

✦ Unexpected long-running processes

✦ Improper directory protections

✦ Improper protections on system data files

✦ Dangerous entries in the program search path (Trojan horse)

 ✦ Changes to system programs: monitor checksum values

Encryption

 The basic idea of encryption is to encode a message so that only the desired recipient can

decode and read it. Encryption has been around since before the days of Caesar, and is an

entire field of study in itself. Only some of the more significant computer encryption
schemes will be covered here.

 The basic process of encryption is shown in Figure 15.7, and will form the basis of most

of our discussion on encryption. The steps in the procedure and some of the key

terminology are as follows:
1. The sender first creates a message, m in plaintext.

2. The message is then entered into an encryption algorithm, E, along with

the encryption key, Ke.

3. The encryption algorithm generates the ciphertext, c, = E(Ke)(m). For any key k,
E(k) is an algorithm for generating ciphertext from a message, and both E and

E(k) should be efficiently computable functions.

4. The ciphertext can then be sent over an unsecure network, where it may be

received by attackers.
5. The recipient enters the ciphertext into a decryption algorithm, D, along with

the decryption key, Kd.

6. The decryption algorithm re-generates the plaintext message, m, = D(Kd)(c). For

any key k, D(k) is an algorithm for generating a clear text message from a
ciphertext, and both D and D(k) should be efficiently computable functions.

7. The algorithms described here must have this important property: Given a

ciphertext c, a computer can only compute a message m such that c = E(k)(m) if it

possesses D(k). (In other words, the messages can't be decoded unless you have
the decryption algorithm and the decryption key.)

Figure 15.7 - A secure communication over an insecure medium.

15.4.1.1 Symmetric Encryption

 With symmetric encryption the same key is used for both encryption and decryption, and
must be safely guarded. There are a number of well-known symmetric encryption

algorithms that have been used for computer security:

o The Data-Encryption Standard, DES, developed by the National Institute of

Standards, NIST, has been a standard civilian encryption standard for over 20
years. Messages are broken down into 64-bit chunks, each of which are encrypted

using a 56-bit key through a series of substitutions and transformations. Some of

the transformations are hidden (black boxes), and are classified by the U.S.

government.
o DES is known as a block cipher, because it works on blocks of data at a time.

Unfortunately this is a vulnerability if the same key is used for an extended

amount of data. Therefore an enhancement is to not only encrypt each block, but

also to XOR it with the previous block, in a technique known as cipher-block
chaining.

o As modern computers become faster and faster, the security of DES has

decreased, to where it is now considered insecure because its keys can be

exhaustively searched within a reasonable amount of computer time. An

enhancement called triple DES encrypts the data three times using three separate

keys (actually two encryptions and one decryption) for an effective key length of
168 bits. Triple DES is in widespread use today.

o The Advanced Encryption Standard, AES, developed by NIST in 2001 to replace

DES uses key lengths of 128, 192, or 256 bits, and encrypts in blocks of 128 bits

using 10 to 14 rounds of transformations on a matrix formed from the block.
o The twofish algorithm, uses variable key lengths up to 256 bits and works on 128

bit blocks.

o RC5 can vary in key length, block size, and the number of transformations, and

runs on a wide variety of CPUs using only basic computations.
o RC4 is a stream cipher, meaning it acts on a stream of data rather than blocks.

The key is used to seed a pseudo-random number generator, which generates

a keystream of keys. RC4 is used in WEP, but has been found to be breakable in a

reasonable amount of computer time.

15.4.1.2 Asymmetric Encryption

 With asymmetric encryption, the decryption key, Kd, is not the same as the encryption

key, Ke, and more importantly cannot be derived from it, which means the encryption
key can be made publicly available, and only the decryption key needs to be kept secret. (

or vice-versa, depending on the application.)

 One of the most widely used asymmetric encryption algorithms is RSA, named after its

developers - Rivest, Shamir, and Adleman.
 RSA is based on two large prime numbers, p and q, (on the order of 512 bits each), and

their product N.

o Ke and Kd must satisfy the relationship:

(Ke * Kd) % [(p - 1) * (q - 1)] = = 1
o The encryption algorithm is:

c = E(Ke)(m) = m^Ke % N

o The decryption algorithm is:

m = D(Kd)(c) = c^Kd % N
 An example using small numbers:

o p = 7

o q = 13

o N = 7 * 13 = 91
o (p - 1) * (q - 1) = 6 * 12 = 72

o Select Ke < 72 and relatively prime to 72, say 5

o Now select Kd, such that (Ke * Kd) % 72 = = 1, say 29

o The public key is now (5, 91) and the private key is (29, 91)
o Let the message, m = 42

o Encrypt: c = 42^5 % 91 = 35

o Decrypt: m = 35^29 % 91 = 42

Figure 15.8 - Encryption and decryption using RSA asymmetric cryptography

 Note that asymmetric encryption is much more computationally expensive than

symmetric encryption, and as such it is not normally used for large transmissions.

Asymmetric encryption is suitable for small messages, authentication, and key
distribution, as covered in the following sections.

1

Chapter 13: Protection

2

Chapter 13: Protection

13.1 Goals of Protection

13.2 Principles of Protection

13.3 Domain of Protection

13.4 Access Matrix

13.5 Implementation of Access Matrix

13.6 Access Control

13.7 Revocation of Access Rights

13.8 Capability-Based Systems

13.9 Language-Based Protection

13.10 Summary

3

Objectives

Discuss the goals and principles of protection in a modern computer system

Explain how protection domains combined with an access matrix are used to
specify the resources a process may access

Examine capability and language-based protection systems

4

13.1 Goals of Protection

Requirements of reliable systems
The need to prevent the mischievous, intentional violation of an access restriction by a
user
The need to ensure that each program component active in a system uses system
resources only in ways consistent with stated policies

Goal: The role of protection in a computer system is to provide a mechanism for the
enforcement of the policies governing resource use

In one protection model, computer consists of a collection of objects, hardware or
software
Each object has a unique name and can be accessed through a well-defined set of
operations

Protection problem - ensure that each object is accessed correctly and only by those
processes that are allowed to do so

5

13.2 Principles of Protection

Guiding principle – principle of least privilege

Programs, users and systems should be given just enough privileges to perform

their tasks

Limits damage if entity has a bug, gets abused

Managing users with the principle of least privilege entails creating a separate

account for each user, with just the privileges that the user needs

Usually implements role-based access control (RBAC)

“Need to know”: a similar concept regarding access to data

A process should be able to access only those resources that it currently requires

to complete its task

Information in regards to some activity is not to be communicated to everyone

6

13.3 Domain of Protection

Protection domain:

Specifies the resources that the process may access

Defines

a set of objects and

– Hardware objects (CPU, memory segments, printers, disks, etc) and

– Software objects (files, programs, semaphores, etc)

the types of operations that may be invoked on each object

– The ability to execute an operation on an object is an access right

Domain can be user, process, procedure

A process should be allowed to access only those resources for which it has authorization

7

Domain Structure

A domain is a collection of access rights, each of which is an ordered pair <object-name,
rights-set>

Domain = set of access-rights

Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can be performed on the object

8

Domain Considerations

Associations: static or dynamic
Can be static (during life of system, during life of process)
Or dynamic (changed as needed)

domain switching: enabling the process to switch from one domain to another
privilege escalation: allowing the content of a domain to be changed

“grain” aspect: rough or fine
Rough-grained privilege management easier, simpler, but least privilege now done in
large chunks

For example, traditional Unix processes either have abilities of the associated user,
or of root

Fine-grained management more complex, more overhead, but more protective
File ACL lists, RBAC

9

Domain Implementation (UNIX)

Domain = user-id

Domain switch accomplished via file system

Each file has associated with it a domain bit (setuid bit)

When file is executed and setuid = on, then user-id is set to owner of the file
being executed

When execution completes user-id is reset

Domain switch accomplished via passwords
su command temporarily switches to another user’s domain when other
domain’s password provided

Domain switching via commands
sudo command prefix executes specified command in another domain (if
original domain has privilege or password given)

10

Domain Implementation (MULTICS)

The protection domains are organized hierarchically into a ring structure (0 to 7).
A current-ring-number counter is associated with each process
Let Di and Dj be any two domain rings
If j < i ⇒ Di ⊆ Dj : a process executing in domain Dj has more privileges than
does a process executing in domain Di

11

Multics Benefits and Limits

Ring / hierarchical structure provided more than the basic kernel / user or root / normal
user design

Fairly complex -> more overhead

But does not allow strict need-to-know
Object accessible in Dj but not in Di, then j must be < i
But then every segment accessible in Di also accessible in Dj

12

13.4 Access Matrix
View protection as a matrix (access matrix)

- Rows represent domains
- Columns represent objects

Access(i, j) is the set of operations that a process executing in Domaini can invoke on
Objectj

four domains and four objects—three files (F1, F2, F3) and one printer

13

Use of Access Matrix

Mechanism: If a process in Domain Di tries to do “op” on object Oj, then “op” must
be in the access matrix

User who creates object can define access column for that object

Can be expanded to dynamic protection
Operations to add, delete access rights
Special access rights:

owner of Oi

copy op from Oi to Oj (denoted by “*”)

control – Di can modify Dj access rights (applicable to domain only)

transfer – switch from domain Di to Dj

Copy and Owner applicable to an object
Control applicable to domain object

14

Use of Access Matrix (Cont.)

Access matrix design separates mechanism from policy
Mechanism

Operating system provides access-matrix + rules

If ensures that the matrix is only manipulated by authorized agents and that
rules are strictly enforced

Policy

User dictates policy

Who can access what object and in what mode

But doesn’t solve the general confinement problem
The problem of guaranteeing that no information initially held in an object can
migrate outside of its execution environment

15

Access Matrix of Figure A
with Domains as Objects

• Switching from domain Di to domain Dj is allowed if and only if the
access right switch ∈ access(i, j)
•i.e. domain D2 can switch to domain D3 and D4

16

Access Matrix with Copy Rights

• Assume domain D1 is the owner of F1
and domain D2 is the owner of F2 and
F3

• The ability to copy an access right from
one domain (or row) of the access
matrix to another is denoted by an
asterisk (*) appended to the access
right

(limited) copy the
read operation with
file F2

Variants of copy right:
1. (propagation) copy: access right and

‘*’
2. transfer: A right is copied from

access(i, j) to access(k, j); it is then
removed from access(i, j)

3. limited copy: only the right R (not R∗)
is created

17

Access Matrix With Owner Rights

• Owner right controls addition of new
rights and removal of some rights

• Owner v.s. copy: Owner need not have
some rights before addition, but domain
with * copy right must have some rights
before copy

• Assume domain D1 is the owner of F1
and domain D2 is the owner of F2 and
F3

• D1 removes F1 execute from D3
• D2 adds F2 write* to itself
• D2 adds F2 write and F3 write to D3

18

Modified Access Matrix of Figure 13.4

• If access(i, j) includes the
control right, then a process
executing in domain Di can
remove any access right from
row j

• Suppose include the control right
in access(D2, D4) to above
Figure

• A process executing in domain
D2 could modify domain D4 (F1
read and F3 read) => bottom
Figure

19

13.5 Implementation of Access Matrix

Generally, a sparse matrix
Option 1 – Global table

Store ordered triples < domain, object, rights-set > in table
A requested operation M on object Oj within domain Di -> search table for <
Di, Oj, Rk >

with M ∈ Rk

But table could be large -> won’t fit in main memory
Difficult to group objects (consider an object that all domains can read)

Option 2 – Access lists for objects
Each column implemented as an access list for one object
Resulting per-object list consists of ordered pairs < domain, rights-set >
defining all domains with non-empty set of access rights for the object
Easily extended to contain default set -> If M ∈ default set, also allow
access

20

Implementation of Access Matrix: Separating into Lists

Each column = Access-control List for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete, Copy

21

Implementation of Access Matrix (Cont.)

Option 3 – Capability list for domains
Instead of object-based, list is domain based
Capability list for domain is list of objects together with operations allows on them
Object represented by its name or address, called a capability
Execute operation M on object Oj, process requests operation and specifies capability
as parameter

Possession of capability means access is allowed
Capability list associated with domain but never directly accessible by domain

Rather, protected object, maintained by OS and accessed indirectly
Like a “secure pointer”
Idea can be extended up to applications

Option 4 – Lock-key
Compromise between access lists and capability lists
Each object has list of unique bit patterns, called locks
Each domain as list of unique bit patterns called keys
Process in a domain can only access object if domain has key that matches one of the
locks

22

Comparison of Implementations

Many trade-offs to consider
Global table is simple, but can be large
Access lists correspond to needs of users

Determining set of access rights for domain non-localized so difficult
Every access to an object must be checked
– Many objects and access rights -> slow

Capability lists useful for localizing information for a given process
But revocation capabilities can be inefficient

Lock-key effective and flexible, keys can be passed freely from domain to domain,
easy revocation

Most systems use combination of access lists and capabilities
First access to an object -> access list searched

If allowed, capability created and attached to process
– Additional accesses need not be checked

After last access, capability destroyed
Consider file system with ACLs per file

23

13.6 Access Control

Protection can be applied to non-file resources
Solaris 10 provides role-based access control (RBAC)
to implement least privilege

Privilege is right to execute system call or use an
option within a system call
Can be assigned to processes
Users assigned roles granting access to privileges
and programs

Enable role via password to gain its privileges
Similar to access matrix

24

13.7 Revocation of Access Rights

Various options to remove the access right of a domain to an object
Immediate vs. delayed
Selective vs. general
Partial vs. total
Temporary vs. permanent

Access List – Delete access rights from access list
Simple – search access list and remove entry
Immediate, general or selective, total or partial, permanent or temporary

Capability List – Scheme required to locate capability in the system before
capability can be revoked

Reacquisition – periodic delete, with require and denial if revoked
Back-pointers – set of pointers from each object to all capabilities of that object
(Multics)
Indirection – capability points to global table entry which points to object – delete
entry from global table, not selective (CAL)
Keys – unique bits associated with capability, generated when capability created

Master key associated with object, key matches master key for access
Revocation – create new master key
Policy decision of who can create and modify keys – object owner or others?

25

13.8 Capability-Based Systems

Hydra
Fixed set of access rights known to and interpreted by the system

i.e. read, write, or execute each memory segment
User can declare other auxiliary rights and register those with protection system
Accessing process must hold capability and know name of operation
Rights amplification allowed by trustworthy procedures for a specific type

Interpretation of user-defined rights performed solely by user's program; system
provides access protection for use of these rights
Operations on objects defined procedurally – procedures are objects accessed
indirectly by capabilities
Solves the problem of mutually suspicious subsystems
Includes library of prewritten security routines

Cambridge CAP System
Simpler but powerful
Data capability - provides standard read, write, execute of individual storage
segments associated with object – implemented in microcode
Software capability -interpretation left to the subsystem, through its protected
procedures

Only has access to its own subsystem
Programmers must learn principles and techniques of protection

26

13.9 Language-Based Protection

Specification of protection in a programming language allows the high-level
description of policies for the allocation and use of resources

Language implementation can provide software for protection enforcement when
automatic hardware-supported checking is unavailable

Interpret protection specifications to generate calls on whatever protection system
is provided by the hardware and the operating system

27

Protection in Java 2

Protection is handled by the Java Virtual Machine (JVM)
Load-time and run-time check

A class is assigned a protection domain when it is loaded by the JVM
The protection domain indicates what operations the class can (and

cannot) perform
If a library method is invoked that performs a privileged operation, the stack is
inspected to ensure the operation can be performed by the library

Stack Inspection
(reject if no permission)

V
X

URL loader succeeds since
proxy.lucent.com is permitted
(below *.lucent.com)

28

Summary

Goals and principles of system protection are explained

Protection domain, access rights and access matrix are
introduced

Access control list, capability-based systems, and
examples are given

	Process States or Process Life Cycle:-
	Process Scheduling
	3.2.1 Scheduling Queues

	Cooperating Process:-
	Reasons for needing cooperating processes
	Methods of Cooperation
	Thread
	Types of Thread
	Advantages of threads
	Difference between process and thread

	Inter Process Communication (IPC)
	What is Inter Process Communication?
	Approaches for Inter-Process Communication
	
	Pipes
	Message Passing:
	Message Queues:
	Direct Communication:
	Indirect Communication:
	Shared Memory:
	FIFO:

	Schedulers:-
	Long Term Scheduler or Job Scheduler :-
	Medium Term Scheduler:-
	Short Term Scheduler:-
	Difference between Schedulers:-
	Types of CPU Scheduling
	Preemptive Scheduling
	Non-Preemptive Scheduling
	When scheduling is Preemptive or Non-Preemptive?

	CPU Scheduling Criteria
	Maximize:
	Minimize:

	Interval Timer
	Types of CPU scheduling Algorithm
	First Come First Serve
	Characteristics of FCFS method:

	Shortest Remaining Time
	Characteristics of SRT scheduling method:

	Shortest Job First
	Characteristics of SJF Scheduling

	Non Pre-emptive Shortest Job First
	Problem with Non Pre-emptive SJF

	Pre-emptive Shortest Job First
	Priority Based Scheduling
	Types of Priority Scheduling Algorithm

	Advantages-
	Disadvantages-
	Important Notes-
	Note-01:
	Note-02:

	PRACTICE PROBLEMS BASED ON PRIORITY SCHEDULING-
	Problem-01:
	Round-Robin Scheduling
	Characteristics of Round-Robin Scheduling

	Multiple-Level Queues Scheduling
	Characteristic of Multiple-Level Queues Scheduling:

	The Purpose of a Scheduling algorithm

	Multiple-Processor Scheduling in Operating System
	Approaches to Multiple-Processor Scheduling –
	Real-time Scheduling
	RT Examples
	Deadline Scheduling

	Swapping:-
	It is a method of taking out the current content of memory to backstore(disk) and bring the content of backstore to main memory.
	There are two operations in swapping method:-
	1. Swap out(Read out):- take out to the current data from the main memory.
	2. Swap in(Read in):- bring the data of new user into main memory.
	Non-contiguous memory allocation:-
	In the non-contiguous memory allocation the available free memory space are scattered here and there and all the free memory space is not at one place. So this is time-consuming.
	In the non-contiguous memory allocation, a process will acquire the memory space but it is not at one place it is at the different locations according to the process requirement.
	This technique of non-contiguous memory allocation reduces the wastage of memory which leads to internal and external fragmentation. This utilizes all the free memory space which is created by a different process.
	Variable (Dynamic) Partitioning:-
	Advantages of Dynamic Partitioning over fixed partitioning
	1. No Internal Fragmentation
	2. No Limitation on the size of the process
	3. Degree of multiprogramming is dynamic

	Disadvantages of dynamic partitioning
	External Fragmentation

	File Access Methods in Operating System
	When a file is used, information is read and accessed into computer memory and there are several ways to access this information of the file. Some systems provide only one access method for files. Other systems, such as those of IBM, support many acce...
	Directory Structure:-
	1. Single Level Directory
	Advantages
	Disadvantages

	Two Level Directory
	Characteristics of two level directory system

	Tree Structured Directory
	Permissions on the file and directory

	Acyclic-Graph Structured Directories
	Structures of Directory in Operating System
	Allocation Method
	Advantages of Contiguous Allocation
	Disadvantages of Contiguous allocation
	Linked List Allocation
	Advantages of Linked list allocation
	Disadvantages of Linked list Allocation
	Indexed Allocation
	Advantages of Index Allocation
	Disadvantages of Index Allocation

	Protection in File System:-

