

E-Content

IFTM University, Moradabad

Unit-1

PPC (Principles of Programming using C)

Program

A program is a set of instructions (in a specific programming language) that tell the computer to do

various things. Computer programming is a way of giving computer instructions about what they should

do next. These instructions are known as code, and computer programmers write code to solve problems

or perform a task.

Algorithms

In programming, algorithm is a set of well defined instructions (in a general language) in sequence to

solve the problem. In other words we can say an algorithm is a set of rules that must be followed when

solving a particular problem. An algorithm becomes a program when it is written in the form of a

programming language. Algorithm is a step-by-step solution.

Stages of defining an algorithm

To solve a problem we often need to take a step-by-steps approach to it. We can call this set of steps an

algorithm. One way of thinking of an algorithm is as something taking an input, applying a process to it to

produce the desired output. So we can say an algorithm has three stages-

1. Input

2. Processing

3. Output

Input Process Output

Process

Characteristics of an Algorithm

 Clear and Unambiguous: Algorithm should be clear and unambiguous. Each of its steps should be

clear in all aspects and must lead to only one meaning.

 Well-Defined Inputs: If an algorithm says to take inputs, it should be well-defined inputs.

 Well-Defined Outputs: The algorithm must clearly define what output will be yielded and it should

be well-defined as well.

 Finiteness: The algorithm must be finite, i.e. it should not end up in an infinite loops or similar.

 Feasible: The algorithm must be simple, generic and practical; such that it can be executed upon will

the available resources. It must not contain some future technology, or anything.

 Language Independent: The Algorithm designed must be language-independent, i.e. it must be just

plain instructions that can be implemented in any language, and yet the output will be same, as

expected.

Advantages of algorithm

1. It is easy to understand.

2. Algorithm is a step-wise representation of a solution to a given problem.

3. In Algorithm the problem is broken down into smaller pieces or steps hence, it is easier for the

programmer to convert it into an actual program.

Disadvantages of algorithm.

1. Writing algorithm takes a long time.

2. An Algorithm is not a computer program; it is rather a concept of how a program should be.

3. Branching and looping statements are difficult to show in Algorithms.

Examples of Algorithms in Programming

1. Write an algorithm to add two numbers entered by user.

Step 1: Start

Step 2: Declare variables n1, n2 and sum.

Step 3: Read values n1 and n2.

Step 4: Add n1 and n2 and assign the result to sum. sum←n1+n2

Step 5: Display sum

Step 6: Stop

2. Write an algorithm to take square of a number entered by user.

Step 1: Start

Step 2: Declare variables n and sqr.

Step 3: Read value of n.

Step 4: Multiply n with n and assign the result to sqr. sqr←n*n

Step 5: Display sqr

Step 6: Stop

Flowcharts

A flowchart is a diagram that describes a process, system or computer algorithm. A flowchart is simply a

graphical representation of steps. It shows steps in sequential order and is widely used in presenting the

flow of algorithms, workflow or processes. Typically, a flowchart shows the steps as boxes of various

kinds, and their order by connecting them with arrows.

Flowchart Symbols

Rectangle Shape - Represents a process

Oval or Pill Shape - Represents the start or end

Diamond Shape - Represents a decision

Parallelogram - Represents input/output

Arrow-Indicate Directional Flow

Examples of flowcharts in programming

1. Add two numbers entered by the user.

2. Find the largest among three different numbers entered by the user.

Introduction to C Programming

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories of AT&T

(American Telephone & Telegraph), located in the U.S.A. C is a procedural programming language.

It was developed to overcome the problems of previous languages such as B, BCPL, etc.

Initially, C language was developed to be used in UNIX operating system. It inherits many features of

previous languages such as B and BCPL.

Let's see the programming languages that were developed before C language.

Language Year Developed By

Algol 1960 International Group

CPL 1963 Cambridge University, London University

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

Features of C Language

C is the widely used language. It provides many features that are given below.

1. Machine Independent or Portability

It refers to the usability of the same fragment of code in different environments. C programs are capable of

being written on one platform and being run on another with or without any modification.

2. Modularity/Structured Language

This feature of C language allows the program to be splintered (broken) into smaller units and run

individually with the help of functions. So it is easy to understand and modify.

3. Simple and Efficient

The syntax style of C programming is easy to understand. In high schools or colleges, C is generally

taught as an introductory programming language as it is a well-established fact that it is easier to learn any

other programming language in the long run if you are well familiar with C.

4. Faster

Since it is a compiler-based language, it is comparatively faster than other programming languages

like Java or Python, which are interpreter based. A compiler considers the entire program as input and

thereby generates an output file with the object code whereas an interpreter takes instruction by instruction

as input and then generates an output but does not generate a file.

5. Popular

It is one of the most extensively used languages in the development of operating and embedded systems.

Needless to mention how popular it is.

https://data-flair.training/blogs/c-basic-syntax-rules/
https://data-flair.training/blogs/python-vs-java/

6. Rich Libraries

C language comprises of its library which has a wide range of built-in functions. Even the user-defined

functions can be added to the C library. It gives the user a wide latitude of scope to develop his own

functions for implementing problems for later use and implementation.

7. Memory Management

It supports the feature of DMA (Dynamic Memory Allocation), which helps in the utilization and

management of memory. Among all the features of C, dynamism is unique. Using DMA, the size of a data

structure can be changed during runtime using some predefined functions in the C library such

as malloc(), calloc(), free() and realloc().

8. Case Sensitive

It treats lowercase and uppercase characters differently. For instance, if we declare a variable ‘x’ of

integer type, it would mean a different meaning altogether if we type ‘X’ rather than ‘x’.

9. Mid-level programming language

C combines the features of both Assembly Level Languages (Low Level Languages) and Higher Level

Languages. For this reason, C is referred to as a Middle Level Language. It is used to develop system

applications such as kernel, driver, etc. It also supports the features of a high-level language. That is why it is

known as mid-level language.

https://data-flair.training/blogs/standard-library-functions-in-c/

10. Recursion

In C, we can call the function within the function. It provides code reusability for every function. Recursion

enables us to use the approach of backtracking.

11. Extensible

C language is extensible because it can easily adopt new features.

C Character Set

As every language contains a set of characters used to construct words, statements, etc., C language also

has a set of characters which include alphabets, digits, and special symbols. C language supports a total

of 256 characters.

Every C program contains statements. These statements are constructed using words and these words are

constructed using characters from C character set. C language character set contains the following set of

characters.

1. Alphabets

2. Digits

3. Special Symbols

Alphabets

C language supports all the alphabets from the English language. Lower and upper case letters together

support 52 alphabets.

Lower case letters - a to z

UPPER CASE LETTERS - A to Z

Digits

C language supports 10 digits which are used to construct numerical values in C language.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

C language supports a rich set of special symbols that include symbols to perform mathematical

operations, to check conditions, white spaces, backspaces, and other special symbols.

C Keywords

Keywords are preserved words that have special meaning in C language. The meaning of C language

keywords has already been described to the C compiler. These meaning cannot be changed. Thus,

keywords cannot be used as variable names because that would try to change the existing meaning of the

keyword, which is not allowed. There are total 32 keywords in C language. Keywords are written in

lowercase letters.

auto double int struct break else long switch case enum register typedef const extern return union char

float short unsigned continue for signed volatile default goto sizeof void do if static while

Following table represents the keywords in 'C'-

auto double int struct

break else long switch

case enum register typedef

char extern return union

const short float unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers

In C language identifiers are the names given to variables, constants, functions and user-define data. These

identifier are defined against a set of rules.

Rules for an Identifier

o The first character of an identifier should be either an alphabet or an underscore, and then it can be

followed by any of the character, digit, or underscore.

o It should not begin with any numerical digit.

o In identifiers, both uppercase and lowercase letters are distinct. Therefore, we can say that

identifiers are case sensitive.

o Commas or blank spaces cannot be specified within an identifier.

o Keywords cannot be represented as an identifier.

o Identifiers should be written in such a way that it is meaningful, short, and easy to read.

Example of valid identifiers

1. total, sum, average, _m _, sum_1, etc.

Example of invalid identifiers

1. 2sum (starts with a numerical digit)

2. int (reserved word)

3. char (reserved word)

4. m+n (special character, i.e., '+')

Differences between Keyword and Identifier

Keyword Identifier

Keyword is a pre-defined word. The identifier is a user-defined word

It must be written in a lowercase letter. It can be written in both lowercase and uppercase letters.

Its meaning is pre-defined in the c compiler. Its meaning is not defined in the c compiler.

It is a combination of alphabetical characters. It is a combination of alphanumeric characters.

It does not contain the underscore character. It can contain the underscore character.

Constant

As the name suggests the name constants is given to such variables or values in C programming language

which cannot be modified once they are defined. They are fixed values in a program. C Constants is the

most fundamental and essential part of the C programming language. Constants in C are the fixed values that

are used in a program, and its value remains the same during the entire execution of the program.

Syntax:

const type constant_name;

Example:

const int pi=3.14;

Variable

When we want to store any information (data) on our computer/laptop, we store it in the computer's

memory space. Instead of remembering the complex address of that memory space where we have stored

our data, our operating system provides us with an option to create folders, name them, so that it becomes

easier for us to find it and access it.

Similarly, in C language, when we want to use some data value in our program, we can store it in a

memory space and name the memory space so that it becomes easier to access it. The naming of an

address is known as variable. Variable is the name of memory location. Unlike constant, variables are

changeable; we can change value of a variable during execution of a program. A programmer can choose

a meaningful variable name. Example: name, height, age, total etc.

Data Types in C

Each variable in C has an associated data type. Each data type requires different amounts of memory and

has some specific operations which can be performed over it. C provides various types of data-types

which allow the programmer to select the appropriate type for the variable to set its value. The data-type

in a programming language is the collection of data with values having fixed meaning as well as

characteristics. Some of them are an integer, floating point, character, etc.

C Data Types are used to

 Identify the type of a variable when it declared.

 Identify the type of the return value of a function.

 Identify the type of a parameter expected by a function.

https://www.geeksforgeeks.org/constants-in-c/

C provides three types of data types

 Primary (Built-in) Data Types:

int, char, double ,float and void.

 Derived Data Types:

Array, References, and Pointers.

 User Defined Data Types:

Structure, Union, and Enumeration.

int

Integers are whole numbers that can have both zero, positive and negative values but no decimal values.

For example, 0, -5, 10

We can use int for declaring an integer variable.

int id; int rollno;

Here, id is a variable of type integer.

We can declare multiple variables at once in C programming. For example,

int id, age;

The size of int is usually 4 bytes. (1 byte= 8 bits)

char

Keyword char is used for declaring character type variables. It simply contains a single character enclosed

within ' and ' (a pair of single quote). It is to be noted that the character '8' is not the same as 8.

For example,

char test = 'r'; char ar = '8';

The size of the character variable is 1 byte.

float and double

float and double are used to hold real numbers means decimal values.

float salary;

double price;

The size of float is usually 4 bytes and the size of double is usually 8 bytes.

Operator

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions. C

language is rich in built-in operators and provides the following types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

Arithmetic Operator

The following table shows all the arithmetic operators supported by the C language. Assume

variable A holds 10 and variable B holds 20 then –

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

%
Modulus Operator and remainder of after an

integer division.
B % A = 0

 ++
Increment operator increases the integer value

by one.
A++=11

--
Decrement operator decreases the integer

value by one.

A-- = 9

Relational Operator

The following table shows all the relational operators supported by C. Assume variable A holds 10 and

variable B holds 20 then −

Logical Operator

Following table shows all the logical operators supported by C language. Assume variable A holds 1 and

variable B holds 0, then −

Operator Description

= =
Checks if the values of two operands are equal or not. If

yes, then the condition becomes true.
(A == B) is not true.

!=
Checks if the values of two operands are equal or not. If

the values are not equal, then the condition becomes true.
(A != B) is true.

>

Checks if the value of left operand is greater than the

value of right operand. If yes, then the condition becomes

true.

(A > B) is not true.

<
Checks if the value of left operand is less than the value of

right operand. If yes, then the condition becomes true.
(A < B) is true.

>=

Checks if the value of left operand is greater than or equal

to the value of right operand. If yes, then the condition

becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand is less than or equal to

the value of right operand. If yes, then the condition

becomes true.

(A <= B) is true.

Operator Description Example

&&
Called Logical AND operator. If both the operands are

non-zero, then the condition becomes true.
 (A && B) is false.

||
Called Logical OR Operator. If any of the two operands

is non-zero, then the condition becomes true.
 (A || B) is true.

!

Called Logical NOT Operator. It is used to reverse the

logical state of its operand. If a condition is true, then

Logical NOT operator will make it false.

 ! (A && B) is true.

C – Special Operators

Special Operators in C:

Below are some of the special operators that the C programming language offers.

Operators Description

&
This is used to get the address of the variable.

Example : &a will give address of a.

*
This is used as pointer to a variable.

Example : * a where, * is pointer to the variable a.

Sizeof ()
This gives the size of the variable.

Example: size of (char) will give us 1.

Expressions

An expression is a combination of variables constants and operators written according to the syntax of C

language. In C every expression evaluates to a value i.e., every expression results in some value of a

certain type that can be assigned to a variable. Some examples of C expressions are shown in the table

given below.

Algebraic Expression C Expression

a x b – c a * b – c

(m + n) (x + y) (m + n) * (x + y)

(ab / c) a * b / c

3x
2
 +2x + 1 3*x*x+2*x+1

(x / y) + c x / y + c

C - Program Structure

A C program basically consists of the following parts −

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello to C Language" −

#include <stdio.h>

int main()

{

 /* display below statement */

 printf("Hello to C Language \n");

 return 0;

}

Let us take a look at the various parts of the above program −

 The first line of the program #include <stdio.h> is a preprocessor command, which tells a C compiler

to include stdio.h file before going to actual compilation.

 The next line int main() is the main function where the program execution begins.

 The next line /*...*/ will be ignored by the compiler and it has been put to add additional comments in

the program. So such lines are called comments in the program.

 The next line printf(...) is another function available in C which causes the message " Hello to C

Language” to be displayed on the screen.

 The next line return 0; terminates the main() function and returns the value 0.

Input and output function in C

When we say Input, it means to feed some data into a program. C programming provides a set of built-in

functions to read the given input and feed it to the program as per requirement.

When we say Output, it means to display some data on screen, printer, or in any file. C programming

provides a set of built-in functions to output the data on the computer screen.

All these built-in functions are present in C header files.

scanf() and printf() functions

The standard input-output header file, named stdio.h contains the definition of the

functions printf() and scanf(), which are used to display output on screen and to take input from user

respectively.

When we will compile the above code, it will ask us to enter a value. When we will enter the value, it will

display the value we have entered on screen.

Format String Meaning

%d Scan or print an integer

%f Scan or print a floating point number

%c To scan or print a character

%s To scan or print a character string. The scanning ends at whitespace.

#include<stdio.h>

void main()

{

 /*defining a variable*/

 int i;

 /* displaying message on the screen asking the user to input a value */

 printf("Please enter a value...");

 /*reading the value entered by the user */

 scanf("%d", &i);

 /*displaying the number as output*/

 printf("\n Entered no is: %d", i);

}

Programming Language

A programming language is a formal computer language designed to communicate instructions to a

machine, particularly a computer. Programming languages can be used to create programs to control the

behavior of a machine or to express algorithms. A programming language is a special language

programmers use to develop software programs, scripts, or other sets of instructions for computers to

execute.

High-Level Language (HLL)

High-level language is any programming language that enables development of a program in much

simpler programming context and is generally independent of the computer's hardware architecture. High-

level language has a higher level of abstraction from the computer, and focuses more on the programming

logic rather than the underlying hardware components such as memory addressing and register utilization.

High level languages are designed to be used by the human operator or the programmer. They are referred

to as "closer to humans." In other words, their programming style and context is easier to learn and

implement, and the entire code generally focuses on the specific program to be created.

High-level language doesn’t require addressing hardware constraints to a greater extent when developing a

program. However, every single program written in a high level language must be interpreted into

machine language before being executed by the computer.

Low-Level Language

Low-level language is a programming language that deals with a computer's hardware components and

constraints. It has no or a minute level of abstraction in reference to a computer and works to manage a

computer's operational semantics. Low-level language may also be referred to as a computer’s native

language.

Low-level languages are designed to operate and handle the entire hardware and instructions set

architecture of a computer directly. Low-level languages are considered to be closer to computers. In other

words, their prime function is to operate, manage and manipulate the computing hardware and

components. Programs and applications written in low-level language are directly executable on the

computing hardware without any interpretation or translation.

Machine language and assembly language are popular examples of low level languages.

Assembler, Compiler, Interpreter

Assembler A computer will not understand any program written in a language, other than its machine

language. The programs written in other languages must be translated into the machine language. Such

translation is performed with the help of software. A program which translates an assembly language

program into a machine language program is called an assembler. If an assembler which runs on a

computer and produces the machine codes for the same computer then it is called self assembler or

resident assembler. If an assembler that runs on a computer and produces the machine codes for other

computer then it is called Cross Assembler.

Assemblers are further divided into two types: One Pass Assembler and Two Pass Assembler. One pass

assembler is the assembler which assigns the memory addresses to the variables and translates the source

code into machine code in the first pass simultaneously. A Two Pass Assembler is the assembler which

reads the source code twice. In the first pass, it reads all the variables and assigns them memory addresses.

In the second pass, it reads the source code and translates the code into object code.

Compiler It is a program which translates a high level language program into a machine language

program. A compiler is more intelligent than an assembler. It checks all kinds of limits, ranges, errors etc.

But its program run time is more and occupies a larger part of the memory. It has slow speed. Because a

compiler goes through the entire program and then translates the entire program into machine codes. If a

compiler runs on a computer and produces the machine codes for the same computer then it is known as a

self compiler or resident compiler. On the other hand, if a compiler runs on a computer and produces the

machine codes for other computer then it is known as a cross compiler.

Interpreter An interpreter is a program which translates statements of a program into machine code. It

translates only one statement of the program at a time. It reads only one statement of program, translates it

and executes it. Then it reads the next statement of the program again translates it and executes it. In this

way it proceeds further till all the statements are translated and executed. On the other hand, a compiler

goes through the entire program and then translates the entire program into machine codes. A compiler is

5 to 25 times faster than an interpreter.

By the compiler, the machine codes are saved permanently for future reference. On the other hand, the

machine codes produced by interpreter are not saved. An interpreter is a small program as compared to

compiler. It occupies less memory space, so it can be used in a smaller system which has limited memory

space.

Variable Declaration and Initialization in C Programming Language

C variables are names used for storing a data value to locations in memory. The value stored in the c

variables may be changed during program execution.

C is a strongly typed language. Every variable must be declared, indicating its data type before it can be

used.

Declaration of Variable

Declaration of variable in c can be done using following syntax:

data_type variable_name;

or

data_type variable1, variable2,…,variablen;

where data_type is any valid c data type and variable_name is any valid identifier.

For example,

int a;

float variable;

float a, b;

Initialization of Variable

C variables declared can be initialized with the help of assignment operator ‘=’.

Syntax

data_type variable_name=constant/literal/expression;

or

variable_name=constant/literal/expression;

Example:

 int a=10;

 int a=b+c;

 a=10;

 a=b+c;

Multiple variables can be initialized in a single statement by single value, for example, a=b=c=d=e=10;

Write a program in “C” to calculate the simple interest.

#include<stdio.h>

int main()

{

float p,r,t,si;

printf(“Enter the principle amount”);

scanf(“%f”, &p);

printf(“Enter the rate of interest”);

scanf(“%f”, &r);

printf(“Enter time”);

scanf(%f”,&t);

si=p*r*t/100;

printf(“The simple interest is %f”, si);

return 0;

}

Write a program in “C” to calculate the sum of two integer numbers.

#include <stdio.h>

int main()

{

 int num1, num2, sum;

 printf("Enter first number: ");

 scanf("%d", &num1);

 printf("Enter second number: ");

 scanf("%d", &num2);

 sum = num1 + num2;

 printf("Sum of the entered numbers: %d", sum);

 return 0;

}

Unit-2

PPC (Principles of Programming using C)

C Statements

The bodies of C functions (including the main function) are made up of statements. These can either

be simple statements that do not contain other statements, or compound statements that have other

statements inside them. Control structures are compound statements like if/then/else, while, for, and

do...while that control how or whether their component statements are executed.

1. Simple statements

A statement is a command given to the computer that instructs the computer to take a specific action,

such as display to the screen, or collect input. A computer program is made up of a series of

statements. The simplest kind of statement in C is an expression (followed by a semicolon, the

terminator for all simple statements). Its value is computed and discarded. Examples:

Toggle line numbers

 1. x = 2; /* an assignment statement */

 2. x = 2+3; /* another assignment statement */

 3. 2+3; /* has no effect---will be discarded by smart compilers */

Most statements in a typical C program are simple statements of this form.

2. Compound statements

Statements that have other statements inside them are called compound statements. Compound

statements come in two varieties:

a) Conditionals (if, if else, if else if, switch)

b) Loops (while, do while, for loop, Loops with break, continue, and goto).

C – If statement

When we need to execute a block of statements only when a given condition is true then we use if

statement.

It is one of the powerful conditional statements. if statement is responsible for modifying the flow of

execution of a program. if statement is always used with a condition. The condition is evaluated first

before executing any statement inside the body of If. The syntax for if statement is as follows:

if (condition)

instruction;

How if statement works?

The if statement evaluates the test expression inside the parenthesis ().

 If the test expression is evaluated to true, statements inside the body of if are executed.

 If the test expression is evaluated to false, statements inside the body of if are not executed.

The condition evaluates to either true or false. True is always a non-zero value, and false is a value that

contains zero. Instructions can be a single instruction or a code block enclosed by curly braces { }.

The statements inside the body of “if” only execute if the given condition returns true. If the condition

returns false then the statements inside “if” are skipped.

Example of if statement

#include <stdio.h>

int main()

{

 int x = 20;

 int y = 22;

 if (x<y)

 {

 printf("Variable x is less than y");

 }

 return 0;

}

Output:

Variable x is less than y

Explanation: The condition (x<y) specified in the “if” returns true for the value of x and y, so the

statement inside the body of if is executed.

Example of if statement

#include<stdio.h>

void main()

{

int a,b;

printf("enter the value of a and b")

scanf("%d %d", &a, &b);

if(a>b)

printf("%d is greater than %d", a, b)

}

Example of multiple if statements

We can use multiple if statements to check more than one conditions.

#include <stdio.h>

int main()

{

 int x, y;

 printf("enter the value of x:");

 scanf("%d", &x);

 printf("enter the value of y:");

 scanf("%d", &y);

 if (x>y)

 {

 printf("x is greater than y\n");

 }

 if (x<y)

 {

 printf("x is less than y\n");

 }

 if (x==y)

 {

 printf("x is equal to y\n");

 }

 return 0;

}

In the above example the output depends on the user input.

Output:

enter the value of x:20

enter the value of y:20

x is equal to y

Write a program to find the largest number among the three using multiple if statements.

#include <stdio.h>

int main()

{

 int a, b, c;

 printf("Enter three numbers?");

 scanf("%d %d %d",&a,&b,&c);

 if(a>b && a>c)

 {

 printf("%d is largest",a);

 }

 if(b>a && b > c)

 {

 printf("%d is largest",b);

 }

 if(c>a && c>b)

 {

 printf("%d is largest",c);

 }

 if(a == b && a == c)

 {

 printf("All are equal");

 }

}

Output
Enter three numbers?

12 23 34

34 is largest

C-If else statement

The if-else statement is used to perform two operations for a single condition. The if-else statement is

an extension to the if statement using which, we can perform two different operations, i.e., one is for

the correctness of that condition, and the other is for the incorrectness of the condition.

The syntax of the if..else statement is:

if (test expression)

{

 // statements to be executed if the test expression is true

}

else

{

 // statements to be executed if the test expression is false

}

Flow Diagram of if-else

Write a program to check whether a person is eligible to vote or not using if-else.

#include <stdio.h>

int main()

{

 int age;

 printf("Enter your age?");

 scanf("%d", &age);

 if(age>=18)

 {

 printf("You are eligible to vote...");

 }

 else

 {

 printf("Sorry ... you can't vote");

 }

}

Example

#include <stdio.h>

int main()

{

 int x, y;

 printf("enter the value of x:");

 scanf("%d", &x);

 printf("enter the value of y:");

 scanf("%d", &y);

 if (x>y)

 {

 printf("x is greater than y\n");

 }

 else

 {

 printf("x is less than y\n");

 }

 return 0;

}

Write a program to check whether an integer is even or odd using if else statement.

#include <stdio.h>

int main()

{

 int number;

 printf("Enter an integer: ");

 scanf("%d", &number);

 // True if the remainder is 0

 if (number%2 == 0)

 {

 printf("%d is an even integer.",number);

 }

 else {

 printf("%d is an odd integer.",number);

 }

 return 0;

}

C-Nested If Statement

A nested if in C is an if statement that is the target of another if statement. Nested if statements

means an if statement inside another if statement. C allows us to use nested if statements within if

statements, i.e, we can place an if statement inside another if statement.

Syntax:
if (condition1)

{

 // executes when condition1 is true

 if (condition2)

 {

 // executes when condition2 is true

 }

}

Example

#include <stdio.h>
 int main()

{
 int i;
 printf("Enter value of i");

 scanf("%d", &i);
 if (i < 10)
 {

printf("i is smaller than 10\n");
 if (i < 15)
 printf("i is smaller than 15 too\n");
 if (i < 20)
 printf("i is smaller than 20 too\n");
 }
 return 0;
}

C Nested If..else statement

When an if else statement is present inside the body of another “if” or “else” then this is called nested

if else.

Syntax:

if(condition) {

 //Nested if else inside the body of "if"

 if(condition2)

 {

 //Statements inside the body of nested "if"

 }

 else {

 //Statements inside the body of nested "else"

 }

}

else {

 //Statements inside the body of "else"

}

Example of nested if..else

#include <stdio.h>

int main()

{

 int var1, var2;

 printf("Input the value of var1:");

 scanf("%d", &var1);

 printf("Input the value of var2:");

 scanf("%d",&var2);

 if (var1 != var2)

 {

 printf("var1 is not equal to var2\n");

 //Nested if else

 if (var1 > var2)

 {

 printf("var1 is greater than var2\n");

 }

 else

 {

 printf("var2 is greater than var1\n");

 }

 }

 else

 {

 printf("var1 is equal to var2\n");

 }

 return 0;

}

If-else-if ladder in C

The C if statements are executed from the top down. As soon as one of the conditions controlling the if

is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed.

If none of the conditions are true, then the final else statement will be executed.

Syntax:

if(condition1)

{

//code to be executed if condition1 is true

}

else if(condition2)

{

//code to be executed if condition2 is true

}

else if(condition3)

{

//code to be executed if condition3 is true

}

...

else

{

//code to be executed if all the conditions are false

}

Example

#include <stdio.h>

int main()

{

 int marks;

 printf("Enter your marks?");

 scanf("%d", &marks);

 if (marks > 85 && marks <= 100)

 {

 printf("Congrats ! you scored grade A ...");

 }

 else if (marks > 60 && marks <= 85)

 {

 printf("You scored grade B + ...");

 }

 else if (marks > 40 && marks <= 60)

 {

 printf("You scored grade B ...");

 }

 else if (marks > 30 && marks <= 40)

 {

 printf("You scored grade C ...");

 }

 else

 {

 printf("Sorry you are fail ...");

 }

}

Conditional Operator in C

The conditional operator is also known as a ternary operator. The conditional statements are the

decision-making statements which depend upon the output of the expression. It is represented by two

symbols, i.e., '?' and ':'

As conditional operator works on three operands, so it is also known as the ternary operator.

The behavior of the conditional operator is similar to the 'if-else' statement as 'if-else' statement is also

a decision-making statement.

Syntax of a conditional operator

Expression1? expression2: expression3;

https://www.javatpoint.com/c-if-else

Meaning of above syntax

o In the above syntax, the expression1 is a Boolean condition that can be either true or false

value.

o If the expression1 results into a true value, then the expression2 will execute.

o The expression2 is said to be true only when it returns a non-zero value.

o If the expression1 returns false value then the expression3 will execute.

o The expression3 is said to be false only when it returns zero value.

Example 1

#include <stdio.h>

int main()

{

 int age; // variable declaration

 printf("Enter your age");

 scanf("%d",&age); // taking user input for age variable

 (age>=18)? (printf("eligible for voting")) : (printf("not eligible for voting")); // conditional oper

ator

 return 0;

}

Example 2

#include <stdio.h>

int main()

{

 int a=5,b; // variable declaration

 b=((a==5)?(3):(2)); // conditional operator

 printf("The value of 'b' variable is : %d",b);

 return 0;

}

 # Program to store the greatest of the two number using conditional operator.

#include <stdio.h>

int main()

{

 int m,n;

 printf("Enter values of m and n");

 scanf("%d %d", &m,&n);

 (m > n) ? printf("m is greater than n that is %d > %d",

 m, n)

 : printf("n is greater than m that is %d > %d",

 n, m);

 return 0;

}

Switch statement in C

The switch statement in C is an alternate to if-else-if ladder statement which allows us to execute

multiple operations for the different possible values of a single variable called switch variable. Here,

we can define various statements in the multiple cases for the different values of a single variable.

The syntax of switch statement in c language is given below:

switch (expression)

{

case value1:

 //code to be executed;

 break; //optional

case value2:

 //code to be executed;

 break; //optional

......

 case value n:

 //code to be executed;

 break; //optional

default:

 code to be executed if all cases are not matched;

 }

Switch statement in C tests the value of a variable and compares it with multiple cases. Once the case

match is found, a block of statements associated with that particular case is executed.

Each case in a block of a switch has a different name/number which is referred to as an identifier. The

value provided by the user is compared with all the cases inside the switch block until the match is

found.

Rules for switch statement in C language

1) The switch expression must be of an integer or character type.

2) The case value must be an integer or character constant.

3) The case value can be used only inside the switch statement.

4) The break statement in switch case is not must. It is optional. If there is no break statement found in

the case, all the cases will be executed present after the matched case. It is known as fall through the

state of C switch statement.

https://www.javatpoint.com/c-programming-language-tutorial

Functioning of switch case statement

First, the integer expression specified in the switch statement is evaluated. This value is then matched

one by one with the constant values given in the different cases. If a match is found, then all the

statements specified in that case are executed along with the all the cases present after that case

including the default statement. No two cases can have similar values. If the matched case contains a

break statement, then all the cases present after that will be skipped, and the control comes out of the

switch. Otherwise, all the cases following the matched case will be executed.

Let's see a simple example of c language switch statement.

#include<stdio.h>

int main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

switch(number)

{

case 10:

printf("number is equals to 10");

break;

case 50:

printf("number is equal to 50");

break;

case 100:

printf("number is equal to 100");

break;

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output

enter a number:4

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

 Switch case example 2

#include <stdio.h>

int main()

{

 int x = 10, y = 5;

 switch(x>y && x+y>0)

 {

 case 1:

 printf("hi");

 break;

 case 0:

 printf("bye");

 break;

 default:

 printf(" Hello bye ");

 }

}

Output

hi

C Switch statement is fall-through

In C language, the switch statement is fall through; it means if you don't use a break statement in

the switch case, all the cases after the matching case will be executed.

Let's try to understand the fall through state of switch statement by the example given below.

#include<stdio.h>

int main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

switch(number){

case 10:

printf("number is equal to 10\n");

case 50:

printf("number is equal to 50\n");

case 100:

printf("number is equal to 100\n");

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

Output

enter a number:10

number is equal to 10

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

Output

enter a number:50

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

Nested-Switch Statement:

Nested-Switch statements refers to Switch statements inside of another Switch Statements.

Syntax:

switch(n)

{

 // code to be executed if n = 1;

 case 1:

 // Nested switch

 switch(num)

 {

 // code to be executed if num = 10

 case 10:

 statement 1;

 break;

 // code to be executed if num = 20

 case 20:

 statement 2;

 break;

 // code to be executed if num = 30

 case 30:

 statement 3;

 break;

 // code to be executed if num

 // doesn't match any cases

 default:

 }

 break;

 // code to be executed if n = 2;

 case 2:

 statement 2;

 break;

 // code to be executed if n = 3;

 case 3:

 statement 3;

 break;

 // code to be executed if n doesn't match any cases

 default:

}

Example#1

#include <stdio.h>

int main()

{

 int x = 1, y = 2;

 // Outer Switch

 switch (x)

 {

 // If x == 1

 case 1:

 // Nested Switch

 switch (y) {

 // If y == 2

 case 2:

 printf("Choice is 2");

 break;

 // If y == 3

 case 3:

 printf("Choice is 3");

 break;

 }

 break;

 // If x == 4

 case 4:

 printf("Choice is 4");

 break;

 // If x == 5

 case 5:

 printf("Choice is 5");

 break;

 default:

 printf("Choice is other than 1, 2 3, 4, or 5");

 break;

 }

 return 0;

}

Output:

Choice is 2

Example #2

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 switch(a) {

 case 100:

 printf("This is part of outer switch\n", a);

 switch(b) {

 case 200:

 printf("This is part of inner switch\n", a);

 }

 }

 printf("Exact value of a is : %d\n", a);

 printf("Exact value of b is : %d\n", b);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

This is part of outer switch

This is part of inner switch

Exact value of a is : 100

Exact value of b is : 200

Write a C program to print day of week name using switch case.

Iteration Statements in C

Iteration is when the same procedure is repeated multiple times. Iteration statements create loops in

the program. A loop is used for executing a block of statements repeatedly until a given condition

returns false. In other words, it repeats the set of statements until the condition for termination is met.

A Loop executes the sequence of statements many times until the stated condition becomes false. A

loop consists of two parts, a body of a loop and a control statement. Iteration statements in C are

while, do-while and for loop.

1. while Loop

The while loop in C is most fundamental loop statement. It repeats a statement or block while its

controlling expression is true. Here is its general form:

while (condition)

{

 // body of loop (code to be executed)

}

The condition can be any boolean expression. The body of the loop will be executed as long as the

conditional expression is true.

How while loop works?

The while loop evaluates the test expression inside the parenthesis ().

If the test expression is true, statements inside the body of while loop are executed. Then, the test

expression is evaluated again.

The process goes on until the test expression is evaluated to false.

If the test expression is false, the loop terminates (ends).

Example

#include <stdio.h>

void main ()

{

 int count=1;

 while (count <= 4)

 {

 printf("%d ", count);

 count++;

 }

 }

The ouput of the program is:

 1 2 3 4

Example

#include <stdio.h>

int main()

{

 int var=1;

 while (var <=2)

 {

 printf("%d ", var);

 }

}

The program is an example of infinite while loop. Since the value of the variable var is same (there is

no ++ or -- operator used on this variable, inside the body of loop) the condition var<=2 will be true

forever and the loop would never terminate.

Example

#include <stdio.h>

int main()

{

 int var = 6;

 while (var >=5)

 {

 printf("%d", var);

 var++;

 }

 return 0;

}

Infinite loop: var will always have value >=5 so the loop would never end.

Example
#include <stdio.h>

int main ()

{

 int a = 10;

 while (a < 20)

 {

 printf("value of a: %d\n", a);

 a++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Program to print table for the given number using while loop in C

#include<stdio.h>

int main()

{

 int i=1,number;

 printf("Enter a number: ");

 scanf("%d",&number);

 while(i<=10)

 {

 printf("%d \n",(number*i));

 i++;

 }

 return 0;

}

Output

Enter a number: 50

50

100

150

200

250

300

350

400

450

500

2. do-while statement

A do...while loop in C is similar to the while loop except that the condition is always executed after

the body of a loop. The do-while loop always executes its body at least once, because its conditional

expression is at the bottom of the loop. Its general form is:

do{

 // body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the

conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop terminates.

As with all of C’s loops, condition must be a Boolean expression.

#include <stdio.h>

int main ()

{

 int n = 10;

 do

 {

 printf("tick %d", n);

 printf("\n");

 n--;

 }while (n > 0);

}

Example

#include <stdio.h>

int main()

{

 int j=0;

 do

 {

 printf("Value of variable j is: %d\n", j);

 j++;

 }while (j<=3);

 return 0;

}

Output:
Value of variable j is: 0

Value of variable j is: 1

Value of variable j is: 2

Value of variable j is: 3

While vs do..while loop in C

Using while loop:

#include <stdio.h>

int main()

{

 int i=0;

 while(i==1)

 {

 printf("while vs do-while");

 }

 printf("Out of loop");

}

Output:

Out of loop

Same example using do-while loop

#include <stdio.h>

int main()

{

 int i=0;

 do

 {

 printf("hello\n");

 }while(i==1);

 printf("Out of loop");

}

Output:

hello

Out of loop

3. for loop

Here is the general form of the traditional for statement:

For (initialization; condition; iteration)

{

 // body

}

Example:

//example program to illustrate for looping

#include <stdio.h>

int main ()

{

 int n;

 for(n = 10; n>0 ; n--)

 {

 printf("tick %d",n);

 printf("\n");

 }

}

There can be more than one statement in initialization and iteration section. They must be separated

with comma.

Example:

#include <stdio.h>

int main ()

{

 int a, b;

 for (a = 1, b = 4; a < b; a++, b--)

 {

 printf("a = %d \n", a);

 printf("b = %d \n", b);

 }

}

The ouput of the program is:

a = 1

b = 4

a = 2

b = 3

Here, the initialization portion sets the values of both a and b. The two comma separated statements in

the iteration portion are executed each time the loop repeats.

Nested Loops

Loops can be nested as per requirement. Here is example of nesting the loops.

// nested loops

#include <stdio.h>

int main ()

{

 int i, j;

 for (i = 0; i < 8; i++)

 {

 for (j = i; j < 8; j++)

 printf("*");

 printf("\n");

 }

}

Here, two for loops are nested. The number times inner loop iterates depends on the value of i in outer

loop.

The output of the program is:

**

*

#Write a C program to display first 10 natural numbers using for loop.

#include <stdio.h>

void main()

{

 int i;

 printf("The first 10 natural numbers are:\n");

 for (i=1;i<=10;i++)

 {

 printf("%d ",i);

 }

printf("\n");

}

Output

The first 10 natural numbers are:

1 2 3 4 5 6 7 8 9 10

#Write a C program to display the sum of first 10 natural numbers

#include <stdio.h>

void main()

{

 int j, sum = 0;

 printf("The first 10 natural number is:\n");

 for (j = 1; j <= 10; j++)

 {

 sum = sum + j;

 printf("%d ",j);

 }

 printf("\nThe Sum is: %d\n", sum);

}

Output

The first 10 natural number is:

1 2 3 4 5 6 7 8 9 10

The Sum is: 55

For Loop variations

We can use 2 or more loop control variables

#include<stdio.h>

int main()

{

int i,j;

for(i=0, j=10; i<10; i++, j--)

{

 printf("%d + %d = %d\n",i,j,i+j);

}

printf("The value of i is %d",i);

return 0;

}

In the example above, i and j both are initialized, separated by a comma operator. In the increment

expression, i is incremented and j is decremented.

Jump Statements In C

Jump statements are used to interrupt the normal flow of program. Jump Statement makes the

control jump to another section of the program unconditionally when encountered. It is usually used to

terminate the loop or switch-case instantly. It is also used to escape the execution of a section of the

program.

Types of Jump Statements

a) Break

b) Continue

c) GoTo

d) Return

e) Exit

Break Statement

A break statement is used to terminate the execution of the rest of the block where it is present and

takes the control out of the block to the next statement. When compiler finds the break statement

inside a loop or switch, compiler will abort the loop and continue to execute statements followed by

loop. The break statement in C can be used in the following two scenarios:

1. With switch case

2. With loop

Examples of break statement

Example 1

#include<stdio.h>

#include<conio.h>

void main ()

{

 int i;

 for(i = 1; i<=10; i++)

 {

 if(i == 5)

 break;

 printf("%d ",i);

 }

}

Output

1 2 3 4

Example 2

 #include<stdio.h>

 void main()

 {

 int a=1;

 while(a<=10)

 {

 if(a==5)

 break;

 printf("%d" ,a);

 a++;

 }

 }

 Output :

1 2 3 4

Example 3

#include<stdio.h>

void main ()

{

 int i = 0;

 while(1)

 {

 printf("%d ",i);

 i++;

 if(i == 10)

 break;

 }

 printf("came out of while loop");

}

Output

0 1 2 3 4 5 6 7 8 9 came out of while loop

Continue Statement

The continue statement is also used inside loop. Continue statement is opposite of break statement,

instead of terminating the loop, it forces to execute the next iteration of the loop. As the name suggest

the continue statement forces the loop to continue or execute the next iteration. When the continue

statement is executed in the loop, the code inside the loop following the continue statement will be

skipped and next iteration of the loop will begin.

Example 1

#include<stdio.h>

#include<conio.h>

void main ()

{

 int i;

 for(i = 1; i<=10; i++)

 {

 if(i == 5)

 continue;

 printf("%d ",i);

 }

}

Output

1 2 3 4 6 7 8 9 10

Example 2

#include<stdio.h>

 void main()

 {

 int a=0;

 while(a<10)

 {

 a++;

 if(a==5)

 continue;

 printf("\nStatement %d.",a);

 }

 printf("\nEnd of Program.");

 }

 Output:

 Statement 1.

 Statement 2.

 Statemnet 3.

 Statement 4.

 Statement 6.

 Statement 7.

 Statement 8.

 Statement 9.

 Statement 10.

 End of Program.

Goto Statement

The goto statement is a jump statement which jumps from one point to another point within a function.

Syntax of goto statement

 goto label;

 - - - - - - - - - -

 - - - - - - - - - -

 label:

 - - - - - - - - - -

 - - - - - - - - - -

In the above syntax, label is an identifier. When, the control of program reaches to goto statement, the

control of the program will jump to the label: and executes the code after it.

Example of goto statement

 #include<stdio.h>

 void main()

 {

 printf("\nStatement 1.");

 printf("\nStatement 2.");

 printf("\nStatement 3.");

 goto last;

 printf("\nStatement 4.");

 printf("\nStatement 5.");

 last:

 printf("\nEnd of Program.");

 }

 Output :

 Statement 1.

 Statement 2.

 Statement 3.

 End of Program.

Example 2

#include <stdio.h>

#include <conio.h>

int main()

{

 int english, chemistry, computers, physics, maths;

 float Total, Average, Percentage;

 printf("Please Enter the marks of five subjects: \n");

 scanf("%d%d%d%d%d", &english, &chemistry, &computers, &physics, &maths);

 Total = english + chemistry + computers + physics + maths;

 Average = Total / 5;

 goto label;

 Percentage = (Total / 500) * 100;

 label:

 printf("Total Marks = %.2f\n", Total);

 printf("Average Marks = %.2f\n", Average);

 printf("Marks Percentage = %.2f", Percentage);

getch();

 return 0;

}

Return statement

The return jump statement is used to return some value or simply pass the control to the calling

function. This statement does not mandatorily need any conditional statements. As soon as the

statement is executed, the flow of the program stops immediately and returns the control from where

it was called. An important point to be taken into consideration is that return can only be used in

functions.

Example:

#include<stdio.h>

int sum(int , int);

void main()

{

 int num1, num2, res;

 printf("\nEnter the two numbers : ");

 scanf("%d %d", &num1, &num2);

 res = sum(num1, num2);

 printf("\n Addition of two number is : %d ", res);

}

int sum(int num1, int num2)

{

 int num3;

 num3 = num1 + num2;

 return (num3);

}

Exit Statement

An exit statement is used to terminate the current execution flow. As soon as exit statement is found, it

will terminate the program. It has single argument of zero. For example: exit(0);

In the C Language, the required header for the exit function is: #include <stdlib.h>

Example

#include<stdio.h>

 int main()

 {

int i,j;

for (i=1;i<=10;i++)

{

printf("%d", i);

}

printf("\n");

exit(0);

for (j=1;j<=10;j++)

{

printf("%d", j);

}

return 0;

 }

Unit-3

Principles of Programming using C (PPC)

Array

An array is defined as the collection of similar type of data items stored at contiguous memory locations.

Arrays are the derived data type in C programming language which can store the primitive type of data such

as int, char, double, float, etc. The array is the simplest data structure where each data element can be

randomly accessed by using its index number.

In other words we can say that an array is a variable that can store multiple values. For example, if we want to

store 100 integers, we can create an array for it.

int data[100];

Declaration of C Array

We can declare an array in the c language in the following way.

data_type array_name[array_size];

EX:

int marks[5];

Initialization of C Array

The simplest way to initialize an array is by using the index of each element. We can initialize each element

of the array by using the index. Consider the following example.

marks[0]=80; //initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

C array example

#include<stdio.h>

int main()

{

int i;

int marks[5];//declaration of array

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

//traversal of array

for(i=0;i<5;i++)

{

printf("%d \n",marks[i]);

}//end of for loop

return 0;

}

Output
80

60

70

85

75

C Array: Declaration with Initialization

We can also initialize the c array at the time of declaration.

int marks[5]={20,30,40,50,60};

In such case, there is no requirement to define the size. So it may also be written as the following code.

int marks[]={20,30,40,50,60};

Accessing individual elements of an array

#include<stdio.h>

#include<conio.h>

void main()

{

int a[]={2,4,10};

printf(" %d \n %d", a[0], a[1]);

printf("\n %d", a[2]);

getch();

}

Output

2

4

10

Write a program to insert elements into an array and print the elements of the array.

#include <stdio.h>

int main()

{

 int a[1000],i,n;

 printf("Enter size of array: ");

 scanf("%d",&n);

 printf("Enter %d elements in the array : ", n);

 for(i=0; i<=n-; i++)

 {

 scanf("%d", &a[i]);

 }

 printf("\nElements in array are: ");

 for(i=0;i<n;i++)

 {

 printf("%d ", a[i]);

 }

 return 0;

}

Output

Write a program in C to find the sum of all elements of an array.

#include <stdio.h>

#include <conio.h>

int main()

{

 int a[1000],i,n,sum=0;

 printf("Enter size of the array : ");

 scanf("%d",&n);

 printf("Enter elements in array : ");

 for(i=0; i<n; i++)

 {

 scanf("%d",&a[i]);

 }

 for(i=0; i<n; i++)

 {

 sum =sum+ a[i];

 }

 printf("sum of array is : %d",sum);

 return 0;

}

Multi Dimensional Array

In C programming, we can create an array of arrays. These arrays are known as multidimensional arrays. For

example,

float x[3][4];

Here, x is a two-dimensional (2d) array. The array can hold 12 elements. We can think the array as a table

with 3 rows and each row has 4 columns.

A two-dimensional (2D) array is an array of arrays. A three-dimensional (3D) array is an array of arrays of

arrays. In C programming an array can have two, three, or even ten or more dimensions. The maximum

dimensions of an array in a C program depend on which compiler is being used. More dimensions in an array

mean more data to be held, but also means greater difficulty in managing and understanding arrays.

A multidimensional array is declared using the following syntax:

data_type array_name[d1][d2][d3][d4]………[dn];

Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A two-dimensional array is, in

essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of size [x][y], we would

write something as follows −

 data_type arrayName [x][y];

Where datatype can be any valid C data type and arrayName will be a valid C identifier. A two-dimensional

array can be considered as a table which will have x number of rows and y number of columns. A two-

dimensional array a, which contains three rows and four columns can be shown as follows-

Thus, every element in the array a is identified by an element name of the form a[i][j], where 'a' is the name

of the array, and 'i' and 'j' are the subscripts that uniquely identify each element in 'a'.

Initializing a multidimensional array

Here is how we can initialize two-dimensional and three-dimensional arrays:

Initialization of a 2d array

// Different ways to initialize two-dimensional array

int c[2][3] = {{1, 3, 0}, {-1, 5, 9}};

int c[][3] = {{1, 3, 0}, {-1, 5, 9}};

int c[2][3] = {1, 3, 0, -1, 5, 9}

Initialization of a 3d array

We can initialize a three-dimensional array in a similar way like a two-dimensional array. Here's an example,

int test[2][3][4] = {

 {{3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2}},

 {{13, 4, 56, 3}, {5, 9, 3, 5}, {3, 1, 4, 9}}

 };

Example: Sum of two matrices

// C program to find the sum of two matrices of order 2*2

#include <stdio.h>

int main()

{

 float a[2][2], b[2][2], result[2][2];

 // Taking input using nested for loop

 printf("Enter elements of 1st matrix\n");

 for (int i = 0; i < 2; ++i)

 for (int j = 0; j < 2; ++j)

 {

 printf("Enter a%d%d: ", i + 1, j + 1);

 scanf("%f", &a[i][j]);

 }

 // Taking input using nested for loop

 printf("Enter elements of 2nd matrix\n");

 for (int i = 0; i < 2; ++i)

 for (int j = 0; j < 2; ++j)

 {

 printf("Enter b%d%d: ", i + 1, j + 1);

 scanf("%f", &b[i][j]);

 }

 // adding corresponding elements of two arrays

 for (int i = 0; i < 2; ++i)

 for (int j = 0; j < 2; ++j)

 {

 result[i][j] = a[i][j] + b[i][j];

 }

 // Displaying the sum

 printf("\nSum Of Matrix:");

 for (int i = 0; i < 2; ++i)

 for (int j = 0; j < 2; ++j)

 {

 printf("%.1f\t", result[i][j]);

 if (j == 1)

 printf("\n");

 }

 return 0;

}

Output

Enter elements of 1st matrix

Enter a11: 2;

Enter a12: 0.5;

Enter a21: -1.1;

Enter a22: 2;

Enter elements of 2nd matrix

Enter b11: 0.2;

Enter b12: 0;

Enter b21: 0.23;

Enter b22: 23;

Sum Of Matrix:

2.2 0.5

-0.9 25.0

Passing an array element to a function

Passing array elements to a function is similar to passing variables to a function.

Example : Passing an array

#include <stdio.h>

void display(int age1, int age2)

{

 printf("%d\n", age1);

 printf("%d\n", age2);

}

int main()

{

 int ageArray[] = {2, 8, 4, 12};

 // Passing second and third elements to display()

 display(ageArray[1], ageArray[2]);

 return 0;

}

Output

8

4

https://www.programiz.com/c-programming/c-user-defined-functions

C - Strings

Strings are defined as an array of characters. In C programming, a string is a sequence of characters terminated

with a null character \0. For example:

char c[] = "c string";

When the compiler encounters a sequence of characters enclosed in the double quotation marks, it appends a

null character \0 at the end by default.

How to declare a string?

Here's how we can declare strings:

char s[5];

How to initialize strings?

We can initialize strings in a number of ways as:-

char c[] = "abcd";

char c[5] = "abcd";

char c[] = {'a', 'b', 'c', 'd', '\0'};

char c[5] = {'a', 'b', 'c', 'd', '\0'};

String Input: Read a String

We can use the scanf() function to read a string.

The scanf() function reads the sequence of characters until it encounters whitespace (space, newline, tab, etc.).

Example 1: scanf() to read a string

#include <stdio.h>

int main()

{

 char name[20];

 printf("Enter name: ");

 scanf("%s", name);

 printf("Your name is %s.", name);

 return 0;

}

Output

Enter name: Dennis Ritchie

Your name is Dennis.

Even though Dennis Ritchie was entered in the above program, only "Dennis" was stored in

the name string. It's because there was a space after Dennis.

In order to read a string contains spaces, we use the gets() function. Gets ignores the whitespaces. It stops

reading when a newline is reached (the Enter key is pressed).

Example:

#include <stdio.h>

int main()

{

char full_name[25];

printf("Enter your full name: ");

gets(full_name);

printf("My full name is %s ",full_name);

return 0;

}

Output:

Enter your full name: Dennis Ritchie

My full name is Dennis Ritchie

https://stackoverflow.com/questions/30033582/what-is-the-symbol-for-whitespace-in-c

String Output: Print/Display a String

The standard printf function is used for printing or displaying Strings in C on an output device. The format

specifier used is %s

Example,

printf("%s", name);

String output is also done with the puts() functions.

Example

#include <stdio.h>

int main()

{

 char ch[100];

 printf("Enter any string\n");

 gets(ch);

 printf("\nThe string is - ");

 puts(ch);

 return 0;

}

C supports a wide range of functions that manipulate null-terminated strings −

Sr.No. Function & Purpose

1 strcpy(s1, s2);
Copies string s2 into string s1.

2 strcat(s1, s2);
Concatenates string s2 onto the end of string s1.

3 strlen(s1);
Returns the length of string s1.

4 strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if

s1>s2.

5 strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in string s1.

6 strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string s1.

Example: C strcpy()

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[20] = "C programming";

 char str2[20];

 // copying str1 to str2

 strcpy(str2, str1);

 puts(str2);

 return 0;

}

Output

C programming

Example: C strcat() function

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[100] = "This is ";

 char str2[] = " a program";

 // concatenates str1 and str2 and the resultant string is stored in str1.

 strcat(str1, str2);

 puts(str1);

 puts(str2);

 return 0;

}

Output

This is a program

a program

Example: C strlen() function

#include <stdio.h>

#include <string.h>

int main()

{

 char a[20]="Program";

 char b[20]={'P','r','o','g','r','a','m','\0'};

 // using the %zu format specifier to print size_t

 printf("Length of string a = %zu \n",strlen(a));

 printf("Length of string b = %zu \n",strlen(b));

 return 0;

}

Output

Length of string a = 7

Length of string b = 7

Example: C strcmp() function

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[] = "abcd", str2[] = "abCd", str3[] = "abcd";

 int result;

 // comparing strings str1 and str2

 result = strcmp(str1, str2);

 printf("strcmp(str1, str2) = %d\n", result);

 // comparing strings str1 and str3

 result = strcmp(str1, str3);

 printf("strcmp(str1, str3) = %d\n", result);

 return 0;
}

Output

strcmp(str1, str2) = 32

strcmp(str1, str3) = 0

Unit-4

Principles of Programming using C (PPC)

A function is a block of code that performs a specific task. In c, we can divide a large program into the basic

building blocks known as function. The function contains the set of programming statements enclosed by {}.

A function can be called multiple times to provide reusability and modularity to the C program.

Need of functions in C

Functions are used because of following reasons –

a) To improve the readability of code.

b) Improves the reusability of the code, same function can be used in any program rather than writing the

same code from scratch.

c) Debugging of the code would be easier if we use functions, as errors are easy to be traced.

d) Reduces the size of the code, duplicate set of statements are replaced by function calls.

Types of function

There are two types of function in C programming:

 Standard library functions

 User-defined functions

Standard library functions

The standard library functions are built-in functions in C programming.

These functions are defined in header files. For example,

The printf() is a standard library function to send formatted output to the screen (display output on the

screen). This function is defined in the stdio.h header file.

Hence, to use the printf()function, we need to include the stdio.h header file using #include <stdio.h>.

The sqrt() function calculates the square root of a number. The function is defined in the math.h header file.

User-defined function

We can also create functions as per our need. Such functions created by the user are known as user-defined

functions.

Advantage of functions in C

There are the following advantages of C functions.

o By using functions, we can avoid rewriting same logic/code again and again in a program.

o We can call C functions any number of times in a program and from any place in a program.

o We can track a large C program easily when it is divided into multiple functions.

o Reusability is the main achievement of C functions.

https://www.programiz.com/c-programming/library-function
https://www.programiz.com/c-programming/c-user-defined-functions

Function Aspects

There are three aspects of a C function.

o Function declaration-A function must be declared globally in a c program to tell the compiler about

the function name, function parameters, and return type.

o Function call-Function can be called from anywhere in the program. The parameter list must not

differ in function calling and function declaration. We must pass the same number of functions as it is

declared in the function declaration.

o Function definition-It contains the actual statements which are to be executed. It is the most

important aspect to which the control comes when the function is called. Here, we must notice that

only one value can be returned from the function.

Function Declarations

A function declaration has the following parts −

return_type function_name(parameter list);

Example of function declaration is as follows −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so the following is

also a valid declaration −

int max(int, int);

Function declaration is required when we define a function in one source file and call that function in

another file. In such case, we should declare the function at the top of the file calling the function.

Defining a Function

The general form of a function definition in C programming language is as follows −

return_type function_name(parameter list)

 {

 body of the function

}

A function definition in C programming consists of a function header and a function body. Here are all the

parts of a function −

Return Type − A function may return a value. The return_type is the data type of the value the function

returns. Some functions perform the desired operations without returning a value. In this case, the

return_type is the keyword void.

Function Name − This is the actual name of the function. The function name and the parameter list

together constitute the function signature.

Parameters − A parameter is like a placeholder. When a function is invoked, we pass a value to the

parameter. This value is referred to as actual parameter or argument. The parameter list refers to the type,

order, and number of the parameters of a function. Parameters are optional; that is, a function may contain

no parameters.

Function Body − The function body contains a collection of statements that define what the function

does.

Example

int max(int x, int y)

{

 if (x > y)

 return x;

 else

 return y;

}

Calling a Function

While creating a C function, we give a definition of what the function has to do. To use a function, we will

have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called function. A called function

performs a defined task and when its return statement is executed or when its function-ending closing brace

is reached, it returns the program control back to the main program.

To call a function, we simply need to pass the required parameters along with the function name, and if the

function returns a value, then we can store the returned value.

For example −

#include <stdio.h>

int max(int x, int y)

{

 if (x > y)

 return x;

 else

 return y;

}

int main

{

 int a = 10, b = 20;

 int m = max(a, b);

 printf("m is %d", m);

 return 0;

}

Example 2

#include<stdio.h>

float square (float x);

int main()

{

 float m, n ;

 printf ("\nEnter some number for finding square \n");

 scanf ("%f", &m) ;

 n = square (m) ;

 printf ("\nSquare of the given number %f is %f",m,n);

}

float square (float x) // function definition

{

 float p ;

 p = x * x ;

 return (p) ;

}

OUTPUT:

Enter some number for finding square

2

Square of the given number 2.000000 is 4.000000

C – math.h library functions

LIST OF INBUILT C FUNCTIONS IN MATH.H FILE:

 “math.h” header file supports all the mathematical related functions in C language. All the

arithmetic functions used in C language are given below.

No. Function Description

1) ceil(number) rounds up the given number. It returns the integer value which is greater

than or equal to given number.

2) floor(number) rounds down the given number. It returns the integer value which is less

than or equal to given number.

3) sqrt(number) returns the square root of given number.

4) pow(base,

exponent)

returns the power of given number.

5) abs(number) returns the absolute value of given number.

C Math Example

Let's see a simple example of math functions found in math.h header file.

#include<stdio.h>

#include <math.h>

int main(){

printf("\n%f",ceil(3.6));

printf("\n%f",ceil(3.3));

printf("\n%f",floor(3.6));

printf("\n%f",floor(3.2));

printf("\n%f",sqrt(16));

printf("\n%f",sqrt(7));

printf("\n%f",pow(2,4));

printf("\n%f",pow(3,3));

printf("\n%d",abs(-12));

 return 0;

}

Output:

4.000000

4.000000

3.000000

3.000000

4.000000

2.645751

16.000000

27.000000

12

Function Arguments

C programming function arguments also known as parameters are the variables that will receive the data sent

by the calling program. These arguments serve as input data to the function to carry out the specified task.

Basically, there are two types of arguments:

 Actual arguments

 Formal arguments

The variables declared in the function prototype or definition are known as Formal arguments and the values

that are passed to the called function from the main function are known as Actual arguments.

The actual arguments and formal arguments must match in number, type, and order.

Following are the two ways to pass arguments to the function:

 Call by value

 Call by reference

Type Description

Call by Value -> The actual parameter is passed to a function.

 -> New memory area created for the passed parameters, can be used only within the function.

 -> The actual parameters cannot be modified here.

Call by Reference -> Instead of copying variable; an address is passed to function as parameters.

 -> Address operator(&) is used in the parameter of the called function.

 -> Changes in function reflect the change of the original variables.

Example- Let us call the function swap() by passing actual values as in the following example −

#include <stdio.h>

/* function declaration */

void swap(int x, int y);

int main ()

{

 /* local variable definition */

https://www.w3schools.in/c-tutorial/function-arguments/#call_by_value
https://www.w3schools.in/c-tutorial/function-arguments/#call_by_reference

 int a = 100;

 int b = 200;

 printf("Before swap, value of a : %d\n", a);

 printf("Before swap, value of b : %d\n", b);

 /* calling a function to swap the values */

 swap(a, b);

 printf("After swap, value of a : %d\n", a);

 printf("After swap, value of b : %d\n", b);

 return 0;

}

void swap(int x, int y) {

 int temp;

 temp = x; /* save the value of x */

 x = y; /* put y into x */

 y = temp; /* put temp into y */

 }

Output

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

Example-Let us now call the function swap() by passing values by reference as in the following example −

include <stdio.h>

void swap(int *x, int *y);

int main ()

{

 /* local variable definition */

 int a = 100;

 int b = 200;

 printf("Before swap, value of a : %d\n", a);

 printf("Before swap, value of b : %d\n", b);

 /* calling a function to swap the values */

 swap(&a, &b);

 printf("After swap, value of a : %d\n", a);

 printf("After swap, value of b : %d\n", b);

 return 0;

}

void swap(int *x, int *y) {

 int temp;

 temp = *x; /* save the value of x */

 *x = *y; /* put y into x */

 y = temp; / put temp into y */
}

Output

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

Some Point of Difference between Call by Value and Call by Reference

Parameters Call by value Call by reference

Definition

While calling a function, when you

pass values by copying variables, it

is known as "Call By Values."

While calling a function, in programming language

instead of copying the values of variables, the address of

the variables is used it is known as "Call By References.

Arguments
In this method, a copy of the

variable is passed.
In this method, a variable itself is passed.

Effect

Changes made in a copy of variable

never modify the value of variable

outside the function.

Change in the variable also affects the value of the

variable outside the function.

Alteration of

value

Does not allow you to make any

changes in the actual variables.

Allows you to make changes in the values of variables

by using function calls.

Passing of

variable

Values of variables are passed using

a straightforward method.

Pointer variables are required to store the address of

variables.

Value

modification
Original value not modified. The original value is modified.

Memory

Location

Actual and formal arguments will be

created in different memory location

Actual and formal arguments will be created in the same

memory location

Safety

Actual arguments remain safe as

they cannot be modified

accidentally.

Actual arguments are not Safe. They can be accidentally

modified, so you need to handle arguments operations

carefully.

C pre – processor

As the name suggests Preprocessors are programs that process our source code before compilation. There

are a number of steps involved between writing a program and executing a program.

The source code written by programmers is stored in the file program.c. This file is then processed by

preprocessors and an expanded source code file is generated named program. This expanded file is

compiled by the compiler and an object code file is generated named program .obj. Finally, the linker links

this object code file to the object code of the library functions to generate the executable file program.exe.

Preprocessor programs provide preprocessors directives which tell the compiler to preprocess the source

code before compiling. All of these preprocessor directives begin with a ‘#’ (hash) symbol. The ‘#’ symbol

indicates that, whatever statement starts with #, is going to the preprocessor program, and preprocessor

program will execute this statement. Let's see a list of preprocessor directives.

o #include

o #define

o #undef

o #ifdef

o #ifndef

o #if

o #else

o #elif

o #endif

o #error

o #pragma

A Preprocessor mainly performs three tasks

Removing comments: It removes all the comments. A comment is written only for the humans to

understand the code. So, it is obvious that they are of no use to a machine. So, preprocessor removes all of

them as they are not required in the execution and won’t be executed as well.

This is how to see a file with removed comments in linux) :

Write a C code (let the file name be prog.c). Preprocess it using the command gcc -E prog.c

File inclusion: Including all the files from library that our program needs. In HLL we write #include which

is a directive for the preprocessor that tells it to include the contents of the library file specified. For

example, #include will tell the preprocessor to include all the contents in the library file stdio.h.

This can also be written using double quotes – #include “stdio.h”

Note: If the filename is enclosed within angle brackets, the file is searched for in the standard compiler

include paths. If the filename is enclosed within double quotes, the search path is expanded to include the

current source directory.

Macro expansion: Macros can be called as small functions that are not as overhead to process. If we have

to write a function (having a small definition) that needs to be called recursively (again and again), then we

should prefer a macro over a function.

So, defining these macros is done by preprocessor.

#define SI 1000

Example.

#include <stdio.h>

// macro definition

#define LIMIT 5

int main()

{

 for (int i = 0; i < LIMIT; i++) {

 printf("%d ",i);

 }

 return 0;

}

Output:

0 1 2 3 4

In the above program, when the compiler executes the word LIMIT it replaces it with 5. The word ‘LIMIT’ in

the macro definition is called a macro template and ‘5’ is macro expansion.

Note: There is no semi-colon(‘;’) at the end of macro definition. Macro definitions do not need a semi-colon

to end.

https://www.geeksforgeeks.org/interesting-facts-preprocessors-c/

Storage Class in C

A storage class defines the scope (visibility) and life-time of variables and/or functions within a C Program.

They precede the type that they modify. A storage class in C is used to describe the following things:

 The variable scope.

 The location where the variable will be stored.

 The initialized value of a variable.

 A lifetime of a variable.

 Who can access a variable?

There are total four types of standard storage classes. The table below represents the storage classes in C.

Storage class Purpose

auto It is a default storage class.

extern It is a global variable.

static It is a local variable which is capable of

returning a value even when control is

transferred to the function call.

register It is a variable which is stored inside a Register.

auto: This is the default storage class for all the variables declared inside a function or a block. Hence,

the keyword auto is rarely used while writing programs in C language. Auto variables can be only accessed

within the block/function they have been declared and not outside them (which defines their scope). Of

course, these can be accessed within nested blocks within the parent block/function in which the auto variable

was declared. However, they can be accessed outside their scope as well using the concept of pointers given

here by pointing to the very exact memory location where the variables resides. They are assigned a garbage

value by default whenever they are declared.

extern: Extern storage class simply tells us that the variable is defined elsewhere and not within the

same block where it is used. Basically, the value is assigned to it in a different block and this can be

overwritten/changed in a different block as well. So an extern variable is nothing but a global variable

initialized with a legal value where it is declared in order to be used elsewhere. It can be accessed within any

function/block. Also, a normal global variable can be made extern as well by placing the ‘extern’ keyword

before its declaration/definition in any function/block. This basically signifies that we are not initializing a

new variable but instead we are using/accessing the global variable only. The main purpose of using extern

variables is that they can be accessed between two different files which are part of a large program. For more

information on how extern variables work, have a look at this link.

static: This storage class is used to declare static variables which are popularly used while writing

programs in C language. Static variables have a property of preserving their value even after they are out of

their scope! Hence, static variables preserve the value of their last use in their scope. So we can say that they

are initialized only once and exist till the termination of the program. Thus, no new memory is allocated

because they are not re-declared. Their scope is local to the function to which they were defined. Global static

variables can be accessed anywhere in the program. By default, they are assigned the value 0 by the compiler.

register: This storage class declares register variables which have the same functionality as that of the

auto variables. The only difference is that the compiler tries to store these variables in the register of the

microprocessor if a free register is available. This makes the use of register variables to be much faster than

that of the variables stored in the memory during the runtime of the program. If a free register is not available,

these are then stored in the memory only. Usually few variables which are to be accessed very frequently in a

program are declared with the register keyword which improves the running time of the program. An

important and interesting point to be noted here is that we cannot obtain the address of a register variable

using pointers.

To specify the storage class for a variable, the following syntax is to be followed:

Syntax:

storage_class var_data_type var_name;

auto int i; or extern int b; or static int c; orregister int l;

https://www.geeksforgeeks.org/understanding-extern-keyword-in-c/
https://www.geeksforgeeks.org/understanding-extern-keyword-in-c/
http://quiz.geeksforgeeks.org/static-variables-in-c/
https://www.geeksforgeeks.org/understanding-register-keyword/

Pointers in C

To access address of a variable, we use the unary operator & (ampersand) that returns the address of that

variable. For example &x will give us address of variable x. We have used address numerous times while

using the scanf() function. As

scanf("%d", &var);

Here, the value entered by the user is stored in the address of var variable. Let's take a example.

#include <stdio.h>

int main()

{

 int var = 5;

 printf("var: %d\n", var);

 printf("address of var: %p", &var);

 return 0;

}

Output

var: 5

address of var: 2686778

Pointers (pointer variables) are special variables that are used to store addresses rather than values. This

variable can be of type int, char, array, function, or any other pointer. The asterisk (* the same asterisk used

for multiplication), declares a pointer.

Pointer Syntax

Pointers

Here is how we can declare pointers.

int* p;

int *p1;

int * p2;

Example

#include <stdio.h>

int main()

{

 int a=10; //variable declaration

 int *p; //pointer variable declaration

 p=&a; //store address of variable a in pointer p

 printf("Address stored in a variable p is:%x\n",p); //accessing the address

 printf("Value stored in a variable p is:%d\n",*p); //accessing the value

 return 0;

}

Output:

Address stored in a variable p is:60ff08

Value stored in a variable p is:10

Operator Meaning

* Serves 2 purpose

1. Declaration of a pointer

2. Returns the value of the referenced

variable

& Serves only 1 purpose

 Returns the address of a variable

Write a ‘C’ program to compute the sum of all elements stored in an array Using pointers.

 #include<stdio.h>

 #include<conio.h>

main ()

{

int a [10], I, sum=0,*p;

printf (“enter 10 elements \n”);

for (i=0; i<10; i++)

scanf (“%d”, & a[i]);

p = a;

for (i = 0; i<10; i++)

{

sum = sum*p;

p++;

}

printf (“the sum is % d”, sum);

getch ();

}

Pointer Arithmetic

We can perform addition and subtraction of integer constant from pointer variable.

Addition

ptr1 = ptr1 + 2;

Subtraction

ptr1 = ptr1 - 2;

We can not perform addition, multiplication and division operations on two pointer variables.

For Example:

ptr1 + ptr2 is not valid

However we can subtract one pointer variable from another pointer variable. We can use increment and

decrement operator along with pointer variable to increment or decrement the address contained in pointer

variable.

For Example:

ptr1++;

ptr2--;

Multiplication

Example:

int x = 10, y = 20, z;

int *ptr1 = &x;

int *ptr2 = &y;

z = *ptr1 * *ptr2 ;

Will assign 200 to variable z.

Unit-5

PPC

Structures in C

Arrays allow us to define type of variables that can hold several data items of the same kind. Similarly structure is

another user defined data type available in C that allows us to combine data items of different kinds.

So, Structure in c is a user-defined data type that enables us to store the collection of different data types.

Each element of a structure is called a member.

Lets say we need to store the data of students like student name, age, address, id etc. One way of doing this

would be creating a different variable for each attribute, however when we need to store the data of multiple students

then in that case, we would need to create these several variables again for each student. This is such a big headache to

store data in this way.

We can solve this problem easily by using structure. We can create a structure that has members for name, id,

address and age and then we can create the variables of this structure for each student.

The ,struct keyword is used to define the structure.

Syntax:

struct structure_name

{

 data_type member1;

 data_type member2;

 .

 .

 data_type memeberN;

};

Let's see the example to define a structure for an entity employee in c.

struct employee

{ int id;

 char name[20];

 float salary;

};

The following image shows the memory allocation of the structure employee that is defined in the above

example.

Here, struct is the keyword; employee is the name of the structure; id, name, and salary are the members or

fields of the structure.

Declaring structure variable

We can declare a variable for the structure so that we can access the member of the structure easily. There are

two ways to declare structure variable:

1. By struct keyword within main() function

2. By declaring a variable at the time of defining the structure.

1st way:

Let's see the example to declare the structure variable by struct keyword. It should be declared within the main

function.

struct employee

{ int id;

 char name[50];

 float salary;

};

Structure in C

Now write given code inside the main() function.

struct employee e1, e2;

The variables e1 and e2 can be used to access the values stored in the structure. Here, e1 and e2 can be treated

in the same way as the objects in C++ and Java.

2nd way:

Let's see another way to declare variable at the time of defining the structure.

struct employee

{ int id;

 char name[50];

 float salary;

}e1,e2;

If number of variables are not fixed, use the 1st approach. It provides you the flexibility to declare the structure

variable many times.

If no. of variables are fixed, use 2nd approach. It saves your code to declare a variable in main() function.

Accessing members of the structure

There are two ways to access structure members:

1. By . (member or dot operator)

2. By -> (structure pointer operator)

Let's see the code to access the id member of p1 variable by. (member) operator.

p1.id

C Structure example

Let's see a simple example of structure in C language.

#include<stdio.h>

#include <string.h>

struct employee

{ int id;

 char name[50];

}e1; //declaring e1 variable for structure

int main()

{

 //store first employee information

 e1.id=101;

 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-tutorial

 //printing first employee information

 printf("employee 1 id : %d\n", e1.id);

 printf("employee 1 name : %s\n", e1.name);

return 0;

}

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

Example-2 Let's see another example of the structure in C language to store many employees information.

#include<stdio.h>

#include <string.h>

struct employee

{ int id;

 char name[50];

 float salary;

}e1,e2; //declaring e1 and e2 variables for structure

int main()

{

 //store first employee information

 e1.id=101;

 strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

 e1.salary=56000;

 //store second employee information

 e2.id=102;

 strcpy(e2.name, "James Bond");

 e2.salary=126000;

 //printing first employee information

 printf("employee 1 id : %d\n", e1.id);

 printf("employee 1 name : %s\n", e1.name);

 printf("employee 1 salary : %f\n", e1.salary);

https://www.javatpoint.com/c-programming-language-tutorial

 //printing second employee information

 printf("employee 2 id : %d\n", e2.id);

 printf("employee 2 name : %s\n", e2.name);

 printf("employee 2 salary : %f\n", e2.salary);

 return 0;

}

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

employee 1 salary : 56000.000000

employee 2 id : 102

employee 2 name : James Bond

employee 2 salary : 126000.000000

Example-Write a program in C to Store Information of a Student Using Structure.

#include <stdio.h>

struct student

{

 char name[50];

 int roll;

 float marks;

} s;

int main()

{

 printf("Enter information:\n");

 printf("Enter name: ");

 fgets(s.name, sizeof(s.name), stdin);

 printf("Enter roll number: ");

 scanf("%d", &s.roll);

 printf("Enter marks: ");

 scanf("%f", &s.marks);

 printf("Displaying Information:\n");

 printf("Name: ");

 printf("%s", s.name);

 printf("Roll number: %d\n", s.roll);

 printf("Marks: %.1f\n", s.marks);

 return 0;

}

Union in C

A union is a special data type available in C that allows storing different data types in the same memory

location. You can define a union with many members, but only one member can contain a value at any given

time. Unions provide an efficient way of using the same memory location for multiple purposes.

Defining a Union: To define a union, you must use the union statement in the same way as you did while

defining a structure. The union statement defines a new data type with more than one member for your

program. The format of the union statement is as follows:

union [union name]

 {

 member definition;

 member definition;

 ...

 member definition;

 };

Example

union car

{

 char name[50];

 int price;

};

int main()

{

 union car car1, car2, *car3;

 return 0;

}

Another way of creating union variables is:

union car

{

 char name[50];

 int price;

} car1, car2, *car3;

In both cases, union variables car1, car2, and a union pointer car3 of union car type are created.

Access members of a union

We use the . operator to access members of a union. To access pointer variables, we use also use the

-> operator.

In the above example,

To access price for car1, car1.price is used.

To access price using car3, either (*car3).price or car3->price can be used.

Difference between unions and structures

Let's take an example to understand the difference between unions and structures:

#include <stdio.h>

union unionJob

{

 //defining a union

 char name[32];

 float salary;

 int workerNo;

} uJob;

struct structJob

{

 char name[32];

 float salary;

 int workerNo;

} sJob;

int main()

{

 printf("size of union = %d bytes", sizeof(uJob));

 printf("\nsize of structure = %d bytes", sizeof(sJob));

 return 0;

}

Output

size of union = 32

size of structure = 40

Why this difference in the size of union and structure variables?

Here, the size of sJob is 40 bytes because

the size of name[32] is 32 bytes

the size of salary is 4 bytes

the size of workerNo is 4 bytes

However, the size of uJob is 32 bytes. It's because the size of a union variable will always be the size of its

largest element. In the above example, the size of its largest element, (name[32]), is 32 bytes.

With a union, all members share the same memory.

Example: Accessing Union Members

#include <stdio.h>

union Job {

 float salary;

 int workerNo;

} j;

int main() {

 j.salary = 12.3;

 // when j.workerNo is assigned a value,

 // j.salary will no longer hold 12.3

 j.workerNo = 100;

 printf("Salary = %.1f\n", j.salary);

 printf("Number of workers = %d", j.workerNo);

 return 0;

}

Output

Salary = 0.0

Number of workers = 100

Similarities between Structure and Union

1. Both are user-defined data types used to store data of different types as a single unit.

2. Their members can be objects of any type, including other structures and unions or arrays. A member can

also consist of a bit field.

3. Both structures and unions support only assignment = and sizeof operators. The two structures or unions

in the assignment must have the same members and member types.

4. A structure or a union can be passed by value to functions and returned by value by functions. The

argument must have the same type as the function parameter. A structure or union is passed by value just

like a scalar variable as a corresponding parameter.

5. ‘.’ operator is used for accessing members.

