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A B S T R A C T   

Graphene hailed as the “wonder material” of the 21st century has achieved widespread advancements in various 
disciplines such as applied science and medical science. Due to its unique properties such as selectivity, greater 
medicament capacity, chemo-sensitization, and comfort of functionalization, extraordinary energy has been 
focused to explore its biomedical operation, particularly in chemotherapy, and in the development advanced 
delivery systems for drugs, biomolecules, and genes in the previous era. Graphene oxide, which may be coupled 
covalently or non-covalently with both hydrophilic and hydrophobic molecules, has also emerged as a key nano- 
vector because of its well-defined physicochemical features.Previously, several studies have been demonstrated 
that the functionalized form of graphene exhibits greater biocompatibility and could be a promising medium for 
the development of a novel transport mechanism, although few concerns remain their in vivo properties. This 
review focuses on graphene and its derivatives and their function in nanomedicine, in particularly the transport 
of drugs and biomolecules, as well as in the future trends and challenges associated with graphene-based 
materials.   

1. Introduction 

As a promising new scientific field, nanotechnology has the potential 
to revolutionize many areas of healthcare [1–3]. Compared with nano-
materials derived from other elements on the periodic table, 
carbon-based nanoparticles have superior characteristics. Three types of 
carbon nanoparticles have garnered considerable interest. Carbon 
nanotubes, also called carbon filaments, were founded in 1991 with 
single-walled or multi-walled. Graphene is the newest form of elemental 
carbon. It is a sheet of sp2-bonded carbon atoms arranged in a hexagonal 
pattern, similar to a honeycomb structure. Graphene is at the forefront of 
research in materials science and condensed matter physics [4,5]. It is 
the world’s thinnest known material and act as basic building block for 
some other carbon-based materials. They can be rolled into 
one-dimensional carbon nanotubes (CNTs) and stacked into 

three-dimensional graphite. It can be wrapped in sphere-shaped 
fullerene by the addition of pentagons. It is the mother of all graphite 
materials [6,7]. Graphene and related materials currently represent the 
most advanced frontier in high-performance carbon materials, as 
demonstrated by the European Union Research Council imposing pro-
spective activities known as EU Graphene Flagship. This effort aims to 
boost fundamental research on graphene and its associated chemicals to 
position the European Union as a global leader in the field. This was 
because of the superior properties of this allotropic, one-atom-thick, 
planar sheet of carbon firmly packed into a hexagonal cell structure. 
Even at very low concentrations, graphene can be used to improve the 
mechanical and electrical properties of composite materials made of 
both plastics and metals. Graphene and related materials are not 
expensive to be used and hence, are being used in high-value applica-
tions such as frontier medicine [7,8]. 
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Most of the available conventional therapeutics and delivery systems 
are associated with various shortcomings such as abrupt metabolism and 
excretion of drugs before reaching the target site, poor aqueous solu-
bility, non-specific to target site, and an opposing action on standard 
tissues. Several studies have revealed that such issues and challenges 
may be encountered when utilizing nanotechnology to develop inno-
vative drug transport mechanisms and could lead to the evolution of 
nanomedicine [2,4,9]. Nanotechnology has provided a secure platform 
for designing and developing advanced drug delivery systems [10,11]. 
Till now, various drug delivery models ranging from several nanometers 
to several millimeters have been explored, including micelles, den-
drimers, liposomes, nanoparticles, quantum dots, metal oxides, carbon 
nanotubes, and fullerenes [2,4,12–17]. To date, various novel nano-
materials, such as superparamagnetic iron oxide nanoparticles (SPIONs) 
[18], transition metal dichalcogenides (TMDs) [19], black phosphorus 
(BP) [20], and several organic and inorganic nanomaterials have been 
introduced as drug carriers, leading to the development of several DDSs 
(Table 1). Over the past few decades, carbon- based nanomaterials such 
as graphite, diamond, fullerenes, carbon nanotubes, nanowires, and 
nanoribbons have provided future perspectives for various applications 
[21–23]. Among these nanomaterials, graphene (G) has opened a new 
paradigm in the biomedical field owing to its remarkable properties 
[24–26]. 

The unique features of graphene and its derivatives have attracted 
interest on a global scale. They have been used to make a wide range of 
products, including sensors for the chemical and biochemical industries, 
capacitors for the storage of renewable energy. Its high conductance 
make it a suitable candidate for photovoltaic cells and liquid crystal 
displays in biodevices, and also impart an excessive capability for pho-
tothermal healing, bacterial inhibition, drug transport, and gene therapy 
[27,28]. Thousands of linked articles every year demonstrate the sub-
stantial growth in research efforts in this newly developing nano-
material, as shown the graphs.The data collection of articles including 
graphene in the recent ten years is presented in Graph 1 and Graph 2 
represented the number of the articles containing the search term 
“Graphene as a Nanocarrier.” 

Several review papers have focused on the biomedical applications of 
graphene and GO. This review discusses recent developments and ad-
vances in the application of graphene and graphene derivatives as 
nanocarriers for drugs [29,30]. Therefore we provide a brief outline of 
all that is required for developing nanocarriers for drug delivery. The 
properties, synthesis, surface modification, functionalization, toxicity, 
biocompatibility, and chemical interactions of graphene and its de-
rivatives have been highlighted as significant characteristics for their 
ability to serve as nanocarriers. Next, the most important examples of 
their delivery applications are summarized, along with their processes. 
Finally, we summarize the antiviral activity of graphene-based drug 
delivery systems, particularly against the human Covid-19 virus; 
pH-triggered doxorubicin graphene delivery system, as well as gene 
delivery and biotechnology of GO, its potential role as a biomarker 
sensor for cancer, and its toxicity. 

2. Graphene and its derivatives 

Graphene, a two-dimensional carbon monolayer with sp2 hybridized 
carbons composed of tightly packed carbon atoms in a hexagonal hon-
eycomb structure, was discovered in 2004 [52–54]. During this period 
the research on graphene has expanded tremendously, examining its 
many features and uses as electrical, optoelectronic, and photoconduc-
tive constituents [30,55]. Among the different graphene-related mate-
rials shown in Fig. 1. This material can be produced using numerous 
approaches, including mechanical shedding [54], oxidative 
shedding-reduction [56], arc discharge [56], liq.-phase shedding [56], 
and total organic synthesis [57]. 

2.1. General methods of graphene synthesis 

Generally, graphene can be synthesized using two different routes: 
bottom-up and top-down, as shown in Fig. 3. In the top-down method, 
graphite is exfoliated or converted to graphene. In the bottom-up 
method, a self-deposition or self-assembling process of nanoparticles 
takes place. Geim et al. reported the isolation of graphene using the 
Scotch tape method [52]. Although, high-quality graphene flakes can be 
produced by mechanical exfoliation of graphite, this method is 
labor-intensive and only suitable for small-scale production. Controlling 
the number of graphene layers with large surface area with significant 
interface effects by using SiC substrate are main features of this 
approach [58–61]. Chemical vapour deposition (CVD) is the second 
procedure used to fabricate graphene. This procedure shows excellent 
outcome for producing graphene on a large scale. The following pro-
cesses can be used to prepare graphene by chemically exfoliating 
graphite: chemical derivatization, intercalation, thermal expansion, 
application of surfactants, and oxidation-reduction [56,62]. This process 
eliminates the interlayer van der Waals forces. The use of powerful ox-
idants to prepare graphene oxide is the most typical method for chem-
ically exfoliating graphite. B.C. Brodie was the first to prepare graphite 
oxide, which he subjected to a solution of potassium chlorate and nitric 
acid [54]. Later, Hummers and Offeman oxidized graphite using a so-
lution of sulfuric acid, sodium nitrate, and potassium permanganate 
[52]. For instance, Marcano et al. discovered an improvement in the 
efficiency of oxidation when using a mixture of orthophosphoric and 
sulfuric acids and potassium permanganate [30]. 

3. Properties of graphene 

The honeycomb sp2-carbon structure of graphene is known for its 
elasticity, stability, electrical conductivity, and elevated lipophilicity 
due to the absence of oxygen groups and attaining a steady suspension in 
H2O requires surface-active agents or extra stabilizing agents. In 
contrast, GO is the oxidized arrangement of graphene, produced mainly 
by the Hummers’ method, and contains various functional groups, such 
as carbonyl (C=O), epoxide (C-O-C) and carboxylic (-COOH), and others 
over the external area of GO, along with some sp3 carbons that reduce 
the mechanical and electrical capabilities, but reduce it to very hydro-
philic and water dispersible [52,63–66]. It is a hydrophilic derivative of 
graphene on the H2O with a position of 30.7◦ and has a pair of aromatics 
(sp2) and aliphatic (sp3) fields that simplify the relationship in the sur-
face area [57,59,67]. Furthermore, GO can be reduced by chem-
ical/thermal reduction to partially regain its electrical conductivity and 
water dispersibility. The resulting rGO was examined as a middle 
structure since it holds properties of both graphene and GO [68]. The 
presence of few oxygen groups on rGO, make it less hydrophobic than 
graphene on other side these groups are not sufficient to match the 
higher basal reactivity of GO [69]. Additionally, this two-dimensional 
graphene can be exploited to make zero-dimensional structures, can 
be tuned into one-dimensional structures, or can be loaded toward 
three-dimensional structures [70–74]. The uniqueness of graphene has 
created hype in the scientific community owing to its following 
remarkable properties: a) purest form of carbon b) very large theoretical 
specific area (c) highest intrinsic mobility (d) extremely high mechani-
cal strength (e) exceptionally high thermal conductivity (f) it has optical 
transmittance (g) light weight and thinnest known material in the uni-
verse (h) zero band gaps (i) outstanding elasticity. The main features of 
graphene and its derivatives are listed in Table 2 [62,75–80]. 

4. Surface modification and functionalization of graphene and 
its derivatives 

Graphene, with its remarkable features, have attracted the interest of 
researchers in developing new graphene/graphene-based drug delivery 
systems (GDDS). However, graphene accumulates in biological fluids 
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Table 1 
Nanomaterials used in drug delivery.   

Nanomaterial Size Range Introduction Applications Limitations Reference  

Polymeric micelles 20–50 nm Co-polymers having a water-hating 
part inside (core) and a water- 
loving part outside forms Polymeric 
micelles. 

Both hydrophilic and 
hydrophobic block 
copolymers 
Tremendously small 
construction 
Rise water solvability of 
drugs 

When injected intravenously into 
the blood, the micelles may 
disintegrate. 

[31,32] 

Dendrimers 01–10 nm Highly branched, multiple-shaped 
polymers 

Photodynamic treatment 
Boron neutron detention 
treatment 
Powerful anticancer 
compound 

Certain dendrimer- constructed 
multi-role structures have 
revealed important cytotoxicity. 

[33,34] 

Polymeric 
nanoparticles 

10–1000 nm Solid colloidal particles in which 
the drug may be liquified, captured, 
encapsulated, or attached to a 
nanoparticle matrix. 

Controlled release 
Therapy and imaging 
(theranostics), 
Specific targeting 

Particle aggregation, polymer 
chemical instability, early deliver 
of the active material. Also, the 
liquid dosage forms are 
susceptible to microbial 
proliferation that requires the 
addition of preservatives. 

[35,36] 

Liposomes 90–150 nm Made up of a lipid bilayer, the 
internal hollow portion can be filled 
with single or many medicament 
particles, mock cells about cell 
membrane 

Outstanding 
biocompatibility 
Possible usage as a 
temperature- or pH- 
sensitive drug transporter. 

Impart physical instability, due to 
their amphiphilic nature. 

[37,38] 

Polymeric drug 
conjugates 

10 nm or less Polymers are utilized as 
transporters for drugs, proteins, 
targeting moieties, and imaging 
agents in polymeric prodrugs/ 
macromolecular prodrugs. 

Delivery of cytotoxic drugs 
Precise release 
Surge effectiveness, 
tolerability, and action of 
drugs 

various dissimilar places of 
protein may be conjugated to the 
polymer particles, interfere 
occasionally with the dynamic 
recognition site, and retard the 
bioactivity of the protein. 

[39,40]  

Superparamagnetic 
iron oxide 
nanoparticles (SPIONs) 

10–100 nm Surface characteristics of 
nanoparticles, such as 
superparamagnetic iron oxide 
nanoparticles (SPIONs) with 
biocompatible polymers, and 
controlling their size within the 
desirable range can yield powerful 
targeted delivery vehicles 

Effective in the 
identification of lymph 
node metastases, useful in 
treatment of prostate, 
breast and colon cancer 

Low bioavailability and burst 
release 

[20]  

Transition metal 
dichalcogenides 
(TMDs) 

0.6–0.7 nm 2D TMD nanosheets can directly 
interact with biomolecules resulting 
in their surface modification or 
decoration 

Used for detecting the 
target molecules such as 
nucleic acids and proteins 

Low Efficiency and costly [21]  

Black phosphorus (BP) 338–365 nm 2D Nanosheets can directly interact 
with plasma protein corona from 
blood 

Used for identification of 
plasma corona 

Loss of target capabilities [22]  

Silica nanoparticles opening dimensions in 
the range of 250 nm 

Silicate nanoparticles are 
enormously steady and less 
poisonous. Mesoporous silicate 
resources through fascinated by 
extensive care due to their 
accurately accommodated 
macroscopic arrangement, 
chemical functionality, and 
mesoporous structure. 

Improved 
pharmacokinetic profile 
Enhanced bioavailability 

Porous silica nanoparticles 
interrelating by the outward of 
the phospholipids of the RBC’s 
membranes resultant in 
hemolysis. Also, induce 
immunotoxicity. 

[41,42] 

Gold nanoparticles 1–100 nm Gold nanoparticles (AuNPs) are 
small gold particles and possess 
tunable and unique optical 
properties 

Contrast agents 
Provide controlled target 
delivery 

Non-specific targeting can 
stimulate the host’s immune 
system. 
Unpredictable biodistribution 
behavior along with in-vivo 
instability and a shorter blood 
circulation time period. 

[43,44] 

Carbon nanotubes width characteristically 
diverges in series 0.4–40 
nm extent can differ from 
0.14 nm to 55.5 cm 

Carbon nanotubes (CNTs) are 
sp2nanocarbon materials with 
tubular structures composed of 
rolled-up graphene sheets and 
exhibit remarkable properties. 

Upsurge drug solubility 
and steadiness 
Target drug transport 
Combination therapy 

Biocompatibility issues, cell- 
damaging effects, ability to 
collect in organs, creating 
oxidative stress and damage to 
healthy cells. Because of their 
shape and hydrophobic surface, 
CNTs generally get agglomerated. 

[45,46] 

Fullerenes 30-3000 carbon atoms. 
C60 with a diameter of 
0.7 nm. 

Carbon-belonged resources are 
utilized aimed at their basic 
capability to perform as anti-oxi. 

Basic capability to act as 
an antioxidant. 

Because of their strong binding to 
plasma proteins, they accumulate 
mostly in the liver. 

[47,48] 

Quantum dots 2–10 nm These are the nanoparticles having 
distinct optical and electrical 
features, such as intense and 

Luminescent effect 
Enhanced efficiency and 

High in vivo toxicity, incomplete 
elimination, nonspecific binding 
with the organic molecule. 

[,49] 

(continued on next page) 
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and causes cell death, and hence shows below-par bio solubility and 
biocompatibility [80]. To overcome these limitations, numerous 
external modifications have been made to improve water compatibility 
and biocompatibility [81]. Several studies have demonstrated that 
functionalization improves dispersibility, biocompatibility, reactivity, 
binding capacity, and detection ability [52]. More prominently, these 
changes show functionalized graphene owing to its excellent properties 
as both a carrier and adjuvant. The use of functionalized graphene is also 
an innovative drug delivery approach through activated release by 
means of peripheral stimuli, including pH, magnetic fields, or 
near-infrared radiation [49,51]. Graphene derivatives, the important 

graphene oxide (GO) can be altered to create super facial functionali-
zation, either via covalent or non-covalent approaches [34]. The cova-
lent method is usually achieved via reaction with oxygen species of 
graphene’s unsaturated structure by several different methods, 
including nucleophilic substitution, electrophilic addition, condensation 
and addition. On the other hand, the non-covalent procedures cover Van 
der Waals forces and electrostatic binding without disturbing graphe-
ne’s normal construction and this approach seems to be more convenient 
to handle, and can be attained through polymer covering, adsorption of 
surfactants or small particles and reactions with porphyrins or bio-
molecules such as DNA and peptides (Fig. 2). The GO can be improved 

Table 1 (continued )  

Nanomaterial Size Range Introduction Applications Limitations Reference 

brilliant fluorescence and shows 
adjustable optical features. 

bioavailability 
Reduced side effects 

Magnetic nanoparticles 1–100 nm Are nanoparticles type which will 
be simply traced, operated and 
aimed via outside electro-magnetic 
field and are created with elements 
iron, cobalt, nickel and their oxides. 

Magnetic targeted delivery 
No toxic effects or 
incompatibility 

Non-specific toxicity, [50,51]  

Fig. 1. Schematic representation of Graphene-based materials [29].  

Table 2 
Characteristics of graphene & its derivatives.  

Properties 

Material Mechanical strength i.e; 
Yung’s modulus (Gpa) 

Fracture 
strength 
(Gpa) 

Optical 
transmittance (%) 

Charge carrier 
concentration (cm-2) 

Room temperature 
mobility (cm2 V− 1) 

Thermal 
conductivity (W/ 
mk) 

Electrical 
conductivity (S/ 
cm) 

Graphene 1000 130 97.70 1.4 × 1013 I5-200,000 − 5000 104 

Graphene 
oxide 

220 120 NA NA N/A 2000 104 

Reduced 
graphene 
oxide 

NA NA 60–90 NA N/A 0.14–087 200-35,000 

N/A: Not available. 
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by altering its outer surface to develop several carbon-based complexes 
using chitosan, citric acid, protamine sulphate/sodium alginate etc [82, 
83]. This change is feasibly attained through the chemical precipitation 
of functional groups; for example, a unique technique for establishing 
carboxylic acid on GO to build graphene oxide carboxylic acid 
(GO-COOH). GO-COOH can be utilized in addition to numerous bio-
logical dynamic sets such as myoglobin and protein control and it rep-
resentes the diverse methods for functionalization of GO for tumor 
treatment [84,85]. 

The modification of graphene offers many advantages because the 
functionalization of chemotherapeutic drugs with graphene derivatives 
helps in structural changes, thereby avoiding effortless elimination, 
enhancing bio-distribution, refining extravasation volume, and 

prolonging the vascular flow period, providing an extra definite method 
of drug transport and creating a chemosensitizer. The use of GO in drug 
transport applications is shown in Fig. 3. 

In recent years, various transporter have been synthesized using 
graphene as a building component [94–96] to design effective drug 
delivery platforms for drugs, genes, and biomolecules because of the 
appropriate extended surface area, biocompatibility, and lenience of 
surface functionalization offered by graphene and its derivatives [55,97, 
98]. Furthermore, drugs such as photosensitizers, genes, anticancer 
drugs, and proteins are equally effective in the analysis and treatment of 
diseases when fused with graphene-based materials [99]. 

5. Graphene-based drug delivery systems 

5.1. Distribution of drugs via nano-structured based systems 

The distribution of drugs via nanostructured systems for drug de-
livery has several advantages, such as the protection of drugs due to 
metabolism, enhancing the effectiveness of therapeutic agents, 
decreasing side effects on normal tissues, making medicinal agents more 
selective to a target site, and reducing dose frequency [8,100,101]. The 
rise of graphene-containing nano transporters has not resulted in the 
successful transport of mutually small particles and bulky biomolecules; 
also made the distribution of various agents possible. The very large 
surface area of the material, with every atom exposed on its surface, 
allows for ultrahigh medication and gene loading efficiency. These 
properties make graphene an ideal candidate for drug and biomolecular 
transport. It has achieved enormous success in drug delivery owing to its 
double exposed surface for conjugation, electrical conductivity, and 
ability to create plasma and fluorescence [102,103]. To date, re-
searchers have used graphene and its derivatives to design several 
selected stimuli-responsive drug transport systems either via outer im-
pulse, inner incitation, or multiple stimulus-response drug transport 
approaches with more bioactivity and improved temporal and spatial 
control at lower doses of medicaments, with less toxicity and adverse 
effects [104–106]. A multifunctional graphene-based nanocarrier for 
biomedical applications is shown in Fig. 4. Liu and his coworkers in 
2008 first time investigated graphene for biological purpose and 
discovered GO as a novel drug nanocarrier using polyethylene glyco-
l/GO for filling anticancer drugs through noncovalent bonding [103]. It 
has ignited the interest of researchers to explore graphene and its ana-
logs for a wide range of biomedical uses, together with drug and gene 
transfer and biocompatible scaffolds for cell growth. As drug carriers, 
graphene sheets are in the top most consideration because equal sides of 
a single sheet can be designed for drug binding [107,108]. Further due 
to its nontoxicity and biocompatibility, GO has been widely employed in 
drug delivery applications among carbon-based polymers because of its 

Fig. 2. Mechanism of covalent & non-covalent functionalized graphene & 
graphene oxide utilized for medicine transfer [86,87]. 

Fig. 3. Schematic representation of synthesis, stimuli, structure, applications, 
functionalization and effects of graphene and related materials [85–93]. 

Fig. 4. Diagram depicting the multifunctional uses of graphene and GO 
nanocarriers, which are made up of various drugs, receptors (antibodies) aimed 
at cell target [13,116]. 
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nontoxicity and biocompatibility. Many anticancer drugs, such as 
doxorubicin [109], sumatriptan succinate [110], methotrexate [111], 
quercetin [112], gefitinib [113], proanthocyanidins [114], cispla-
tin/DOX [115], 5-fluorouracil/Curcumin [116], camptothecin [117], 
and cytarabine [118], have the potential to be delivered via GO and 
GO-based nanocomposites. 

Furthermore, the reactive functional groups on its surface, such as 
carboxyl and hydroxyl, permit conjugation with various desired groups 
results in a great augmentation of the multi-functional GO for various 
biological and clinical medical imaging uses [118–120]. However, nat-
ural polymers containing graphene not only promote biocompatibility 
but also aid in reducing harmful consequences. Gelatin acts as a func-
tional group in DOX-deposited graphene nanosheets [121]. Because 
gelatin-graphene has a wide external part and more π-π relations, the 
process increases the medicament’s packing capability. Many years ago, 
the gelatin–graphene–DOX complex demonstrated strong harmfulness 
toward MCF-7 cells, which might activate the approachable nanocarrier 
scheme for precise DOX-targeted drug transfer into the cytosol [122]. 
Subsequently, PEG-modified nano-GO (NGO) sheets were loaded with 
SN38, a camptothecin (CPT) analog, as an antitumor drug. The 
NGO–PEG–SN38 complex exhibited adequate H2O miscibility while 
retaining SN38’s significant in-vitro cytotoxicity. In addition, its strong 
cytotoxic effect was many times greater than that of CPT in HCT116 cells 
[122,123]. DOX was placed onto the PEG–NGO conjugate via 
non-covalent - stacking. Similarly, when the drug was released from the 
GO surface, GO has become pH-dependent. Consequently, the acquired 
pH-sensitive drug distribution was demonstrated using an additional 
GO-based drug delivery system [121]. In another aproach, the two 
antitumor drugs were filled with folic acid in the sense of π-π stacking in 
a regulated activity to find numerous pharmacological treatments for 
cancer therapy (DOX and CPT) [124,125]. Through the presence of folic 
acid receptors, the addition of GO by means of a folic acid ligand in the 
drug-loading approach demonstrated accurate directing action and 
comparatively greater cell toxicity than MCF-7 cells in human breast 
tumors [126]. Hence, graphene-based materials have proven to be an 
excellent approach to develop multifunctional nanocarriers. The de-
livery of various types of drugs using graphene-based materials is 
summarized in Table 3. Its demonstrated the way in which near-infrared 
(NIR) laser irradiation can be used in conjunction with GO nano-
composites to facilitate targeted drug administration and in vivo 
photodynamic treatment, as shown in Fig. 5. 

Several hypothesized pathways of cytotoxicity caused by GOs are 
shown in Fig. 6. GOs enter cells through a variety of mechanisms that 
trigger the production of ROS, increase in LDH, and release of Ca+2. 
Damage to cell membranes, inflammation, DNA damage, mitochondrial 
abnormalities, apoptosis, and necrosis are all the outcomes of GOs 
exposure [169]. 

5.2. pH triggered doxorubicin graphene delivery system 

To transport and release DOX as a pH-dependent charge-reversal 
DDS, a nanocomposite of PEG-modified with 2, 3-dimethyl maleic an-
hydride (DA)-PEG-GO was synthesized [171]. It was found that, at a pH 
of 6.8, the nanocomposite charge switched to positive, causing an in-
crease in PEG-GO-DA absorption by MCF-7 cells. However, at this pH, 
PEG-GO-DA/Dox was more effective in killing cells. PEG-GO-DA/DOX in 
conjunction with an 808 nm NIR laser showed greater efficacy in killing 
cancer cells by using the nanostructures’ high NIR absorbance [171]. To 
produce a synergistic anticancer effect, a new receptor-mediated GO 
nano platform was functionalized with targeting and activating drugs, 
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and 
doxorubicin (DOX) [171]. As shown in Fig. 7, the nano platform accu-
mulated at the tumor site, and after binding TRAIL to the appropriate 
receptors, they surrounded the cells. After the peptide linker and 
apoptosis trigger factor are cleaved by Furin, TRAIL induces death via 
caspase-mediated apoptosis. Finally, DOX-containing GOs are taken up 

into the cytoplasm and drug release begins in the acidic environment of 
endosomes [172,173]. 

People are seeking more effective treatment options because of the 
inadequate therapeutic effects and limitations of chemotherapy; there-
fore, research on drug delivery systems has been growing. However, the 
majority of this research largely concentrated on therapeutic benefits 
and attention to investigate novel drug-loading strategies and enhancing 
efficacy. Thus, unique fluorescence resonance energy transfer (FRET) 
systems have also been developed, and in addition highly luminous 
carbon quantum dots (CQDs) based nanosystems were synthesized 
[174]. In addition, a unique FGO-ADH-HA-Fe3O4 nanocomposite with a 
well-defined structure and excellent solubility in multiple media was 
also developed. It has outstanding turn-off fluorescence features for vi-
sual drug loading, special magnetism, and great photothermal efficiency 
for photothermal therapy (PTT) and hyaluronic acid dual-targeting 
against cancer cells [175]. Multifunctional nanosized fluorinated gra-
phene oxide (FGO) demonstrated by researchers has also proved a rev-
olutionary nanocarrier for precise and controllable delivery of single or 
combination anticancer drugs [176]. 

5.3. The effectiveness of graphene-based antiviral compounds, especially 
against the human Covid-19 

Owing to their unique molecular architecture, CQDs can be modified 
using a wide range of functional groups to provide potent antiviral ef-
fects. For instant, the boric acid-functionalized CQDs exhibited antiviral 
efficacy against HCoV-229E. Here, two mechanisms were identified as 
responsible for the antiviral activities:1) the attachment of CQDs (with 
an average diameter of approximately 7 nm) to the S protein of viruses, 
thereby preventing infectious interactions between host cells and vi-
ruses, and 2) the ability of CQDs to inhibit RNA genomic replication. 
Barras et al. observed similar results after studying the anti-HSV-1 ef-
fects of carbon nanodots functionalized with 4-aminophenyl boronic 
acid hydrochloride. The antiviral properties of CQDs are shown in Fig. 8) 
[177–179]. 

5.4. Delivery of biomacromolecules 

Graphene-based materials can not only transport tiny particles but 
also proteins and peptides. In a previous study, amine-containing GO 
was loaded using protein therapies, and it was discovered that the 
medicines were protected from enzymatic hydrolysis throughout the 
delivery procedure [180]. In addition to proteins and peptides, graphene 
can also transport nucleic acids [181]. This is partly because of the in-
teractions between graphene and nucleobases. Varghese et al. confirmed 
such interactions using isothermal titration calorimetry and discovered 
that the binding power between graphene and guanine was the strong 
[182]. Because graphene and its byproducts can prevent the enzymatic 
destruction of DNA [183,184], they have also been shown to serve as 
non-viral transporters [177]. Graphene-based transporters are 
frequently functionalized with polycations to improve nucleic acid 
loading efficiency. PEI is a commonly used polycation [185] linked to 
related charged nucleic acids [186,187], and also provide active groups 
for additional functionalization to improve transfection effectiveness 
and tissue-targeting capability. A previous study of functionalized GO 
with PEI as a gene transporter discovered that PEI moieties allow the 
transporter to combine with nucleic acids and improve complex 
adherence to the plasma membrane for improved cellular uptake. 
PEI-functionalized graphene-based transporters have been widely used 
in gene therapy for various illnesses, including myocardial infarction, 
osteoporosis [188], and tumors [189]. Other agents such as chitosan, in 
addition to PEI, have been used to alter graphene-based resources for 
improved transfection[173,184,190–197]. The delivery of genes and 
biomolecules using graphene is shown in Table 4. Gene therapy is a 
potential treatment option for a variety of illnesses triggered by genetic 
abnormalities together with tumors. Compared with pure PEI, GO–PEI 
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Table 3 
Delivery of various types of drugs using graphene based material  

Category Drug Graphene-based composite/conjugate Inference/highlights Reference 

Anticancer Doxorubicin CTX-GO/DOX CTX-GO/DOX conjugate enhanced accretion of DOX inside glial 
cells and provided validation for emerging a glioma-specific drug 
transport system 

[127] 

GC–GO–DOX GC–GO–DOX continued steady below physical circumstances, 
and showed a pH-dependent drug release (tumor environment). 

[128] 

ICG/DOX/GO-PPF68 Found optimum in vivo accumulation and superior therapeutic 
efficacy corresponding to MCF-7/ADR tumors and treatment of 
MDR cancer. 

[126] 

TFGP*DOX TFGP*DOX showed a controlled double target drug delivery, no 
harmfulness & improved depressive result on SMMC-7721 cells 

[129] 

Dox-DNA-AuNP Superior in -vivo antitumor properties of Dox-DNA-AuNP by 
obstructing cancer development related in the direction of 
unrestricted Dox in a creating SK-OV-3 xenograft mice model. 

[130] 

NGO-PEG-RB- DOX Rituxan (CD20 antibody) was used as a targeting agent to create 
pH-dependent tailored drug release 

[129] 

PDM/DOX and PLM/DOX, SCM/DOX 
micelles 

The comparative study showed that SCM would be a capable 
medicament distribution approach for cervical carcinoma 

[131] 

PEG-BPEI-rGO-DOX Endosome disruption caused by photothermal cytosolic DOX 
administration. 

[132] 

DOX-GO–CHI–FA In an acidic environment, pH-responsive drug delivery results in 
quicker DOX release. 

[133] 

Gelatin-GS-DOX The use of gelatin-made graphene for cellular imaging & DOX 
administration has been proposed. 

[134] 

GO-Fe3O4 Drug delivery based on inorganic functionalization [135] 
FeCo-GC-DOX Photothermally boosted drug distribution using FeCo-GC 

nanocomposite, with improved distribution by more heat 
accomplished by NIR laser treatment. 

[136] 

FA–NGO/CPT/DOX For the first time, co-delivery of several medicines utilizing GO 
was demonstrated to have much greater lethal ness in MCF-7 
cells when related to simply CPT or DOX. 

[137] 

ADR-GO The use of GO as a DOX carrier for drug resistance revocation in 
MCF-7/ADR cells resulted in excellent loading capability and pH- 
sensitive drug distribution. 

[138] 

Docetaxel Tf-PAH-(GO-DTX) Improved efficacy of pH-dependent targeted drug delivery with 
high loading capacity 

[139] 

Paclitaxel GO-PEG-PTX In a wide range of PTX concentrations and times, GO-PEG-PTX 
demonstrated exceptionally strong cytotoxicity to A549 and 
MCF-7 cells. 

[140] 

Camptothecin CPT-loaded GO-FA-CD Significantly controlled drug delivery with high loading capacity 
for GO nanocarriers for CPT. 

[141] 

PNIPAM-GS-CPT Temperature-dependent drug delivery along with more CPT 
packing efficacy using PNIPAM.  

SN38(CPT analog) NGO-PEG-SN38 H2O-immiscible antitumor drug delivery by more effective than 
CPT. 

[142] 

Curcumin DGO with curcumin and GQD-curcumin GQDs demonstrated a great drug-packing capability of up to 
~40,800 mg/g for a tumor therapeutic approach, and the study 
demonstrates that curcumin can suppress tumor development. 

[143] 

SNX-2112 GO–CHI–HA/SNX-2112 pH-dependent drug release with reduced cytotoxicity against 
human bronchial NHBE cells (Epithelial) 

[144] 

5FU GN-CNT-Fe3O4 The drug was released in a pH-dependent manner, with minimal 
cell toxicity action on liver cells and effective utilization by 
HepG2 cells. 

[14] 

Methotrexate MTX-GO Magnetic iron nanoparticles improved chemotherapeutic 
effectiveness through pH-dependent drug release and 
biocompatibility. 

[111] 

Tamoxifen Citrate Pyridinium bromide (PY + -Chol)-Graphene 
(GR) 

Enhanced apoptosis of cancer cells [145] 

Quercetin (QSR) Gefitinib 
(GEF) 

Polyvinylpyrrolidone (PVP)-GO Within a dose range, high biocompatibility and improved 
anticancer activity 

[146] 

Ellagic acid (EA) GONS-Pluronic F38(F38), GONS - Tween 80 
(T80), GONS–Maltodextrin (MD) 

Significant drug packing (For GO-T80, 1.22 g per 1 g) [147] 

Antibacterial Metronidazole MTD-Chi/GO beads The medicine was released in a regulated, sustained, and 
prolonged manner by these biocompatible beads 

[148] 

Gentamicin MDG – gentamicin matrix Demonstrated controlled release behavior of drug MDG 
nanosheets 

[149] 

gentamicin-loaded graphene nanocomposite Gentamicin-loaded graphene nanocomposite exhibited a bigger 
region of inhibition formed through the entire region of 
inhibition 

[150] 

Antibiotic Tetracycline (TC) Carboxymethyl cellulose (CMC)-Zn-Based 
Metal-Organic Framework (MOF-5)-GO 

Effective protection against stomach pH and efficient oral drug 
administration 

[151] 

Cephalexin GO-PEG-CEF GO-PEG-CEF is a promising nano-antibiotic system with long- 
term efficacy against S. aureus and B. cereus infections. 

[152] 

(continued on next page) 
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Table 3 (continued ) 

Category Drug Graphene-based composite/conjugate Inference/highlights Reference 

Antiemetic Ondansetron Ondansetron loaded Pluronic® F127 
stabilized reduced graphene oxide hydrogel 
(2% Carbopol 940 base) 

A potential transdermal delivery method capable of maintaining 
& modifying drug release profiles with enhanced bioavailability 

[153] 

rGO-Ondansetron A flexible polyimide-based patch was created by dispersing (rGO- 
Ondansetron) nanosheets on top of Kapton. The patch’s release 
approach was predicated on inducing a high temp. with a laser 
ray. The photothermally generated heat expansion modifies 
Ondansetron’s bond for rGO, resulting in regulated Ondansetron 
release from the patch 

[154] 

Antimicrobial Ciprofloxacin CF-loaded GPH film Highly stable, with additional drug-loading sites. The findings of 
the CF-loaded GPH film showed gradual drug release with no 
early burst impact 

[155] 

Antidiabetic Metformin GO + MH hydrogel Significant sustained metformin release for therapeutic tests 
demonstrated the biocompatibility of GO even at 100 μg/mL 
dosage concentration. 

[156] 

Nateglinide NTG-loaded GO-CS nanocomposite. Nateglinide dosing frequency and potential side effects were 
reduced by using GO-Chitosan nanocomposites as a sustained 
release carrier system. 

[157] 

Insulin Insulin-loaded PEGDMA-rGO hydrogels Insulin hydrogel has latent attention intended for the treatment 
of victims with diabetes because of the simplicity of insulin 
loading and reloading, additionally the ability to adjust release 
kinetics by varying irradiation period and radiation capability 

[158] 

Antituberculosis Ethambutol ETB-GO The proposed formulation displayed great biocompatibility and 
sustained drug release 

[158] 

Linezolid GO-LZD co-administration The anti-mycobacterial capabilities of isoniazid (INH), amikacin 
(AMK), linezolid (LZD), and GO were tested against Mtb H37Rv. 
Co-administration of GO-LZD has been proposed as a potentially 
effective anti-TB therapy. 

[159] 

Isoniazid GO-Py-CH and GO-INH, The functionalization of graphene oxide by isoniazid & pyrazine- 
2-carbohydrazide improved the anti-mycobacterial action of the 
corresponding medicines & broadened their antibacterial range 
to include additional microbial strains in both planktonic and 
biofilm development states. 

[160] 

Rifampin (hydrophobic) and 
Isoniazid (hydrophilic) 

RIF–ISN–GO complexes The results revealed that Rifampin (a hydrophobic drug) loaded 
more into the NCs than Isoniazid (a hydrophilic drug), and ISN 
release is quicker than RIF because it takes less effort to separate 
from the surface, and ISN is detached from graphene plates in less 
time. The Antibiogram test demonstrates that the loaded system 
outperformed pure medicines in controlling the growth of all 
susceptible and one-drug-resistant Mycobacterium. 

[161] 

NSAIDs Ibuprofen IBU@BC/GO IBU@BC/GO results pH-dependent controlled release. [162] 
IBU and 5-FU IBU & 5-FU filled on FGOCs showed precise release actions & 

continuing biocompatibility 
[163] 

Buprenorphine, Hyaluronic 
Acid (HA) 
(Osteoarthritis) 

Bp-P-rGO-1000-hydrogel Bp-P-rGO-1000-hydrogel showed sustainable release of the Bp 
owed to solid p–p contacts among drug and GO and prolonged 
the local numbness meant for treating subjects having numerous 
seriousness of diseases (chronic pain) in osteoarthritis similarly a 
lubricating environment for cartilage healing was given by HA 
reinforced with GO, which also had a significant impact on the 
control of the microenvironment in the joint cavity. 

[164] 

Ketamine K–P-rGO-1-Gel Ketamine-laced Pluronic® F127-decreased graphene oxide 
hydrogel resulted in constant ketamine release because of the 
exclusive π- π stacking collaboration among ketamine and 
reduced graphene oxide and may be utilized to decrease 
neuropathic discomfort for a prolonged period while avoiding 
the related side effects of I.V, nasal, & oral routes. 

[165] 

H2 blocker Famotidine FMT-CHGO It demonstrated sustained drug release for up to 12 h, which is 
longer than the market product (Complete release within 2 h). 

[84] 

Flavonoid Quercetin GO-PVP-QSR-GEF The functionalization of GO with polymers such as PVP improved 
its solubility and biocompatibility, with two anticancer 
medicines, quercetin, and gefitinib, demonstrating better 
cytotoxicity to PA-1 ovarian cancer cells than the individual 
drugs placed onto the GO polymer composite. 

[113] 

Protein Allicin CS/PVA/GO/Alli Continuous release of Alli from pH-responsive CS/PVA/GO/Alli 
nanofibrous membrane, confirms the prolonged and excellent 
antibacterial action of Staphylococcus aureus. 

[166] 

Bronchodilator Tulobuterol T-rGO-500 The skin irritation research revealed that the F127-reduced 
graphene oxide hydrogel had adequate mechanical 
characteristics for topical administration and was safe (rabbit 
model). Ex vivo release research showed that rGO may maintain 
tulobuterol release for 72 h because of a strong - interface 
between the drug & graphene oxide. 

[167, 
168] 

Flavonoids Proanthocyanimides GO–CS–Ext. The GO-CS nanocomposite improved the biocompatibility of 
PAs-rich Ext., establishing a novel platform for the prolonged 
release of phytodrugs 

[114] 

(continued on next page) 
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demonstrated less cell toxicity and greater transfection effectiveness at 
the appropriate mass ratio, making it an excellent gene vector [198, 
200]. 

Furthermore, due to the inner physical features of their planar 
structures and large external zones, graphene and GO offer distinct ad-
vantages for loading various types of medicines and receptors [210, 
211]. Owing to their outstanding capabilities, they have been widely 
exploited in the creation of a flexible drug distribution approach aimed 
in the combination treatments [212,213]. Additionally, graphene-based 
nanocarriers exhibit distinct relationships with DNA and RNA, making 

them appealing for DNA and RNA detection and distribution. Further, 
other carbon based carriers including GO/chitosan, GO-PEG, and 
GO/polyamidoamine can be utilized to carry plasmid DNA and siRNA 
[27,214–216]. 

5.5. Biotechnology applications 

In medicine, graphene oxide (GO) has far-reaching effects. Owing to 
its high oxygen content, GO is hydrophilic and easily dissolves in water. 
The improved cell proliferation, drug loading, and antibacterial char-
acteristics of the composites are also attributed to the presence of GO. As 
they are typically biocompatible and bioresorbable, feature a low 
immunological rejection risk, and may replicate the structure of the 
extracellular matrix. Electrospun composites offer significant promise 
for biomedical applications. This study provides a thorough account of 
electrospun composites incorporating GO for use in tissue engineering 
applications. Electrospun GO-containing materials have been investi-
gated for potential use in drug and gene delivery, wound healing, and 
biomaterials/medical devices. GO’s excellent biocompatibility and 
anionic exchange characteristics of GO make it as a promising material 
for pharmaceutical and biomedical applications [217] (Fig. 9). 

5.6. Multipurpose nanocarriers for many therapies 

The use of traditional therapies based on single therapeutic agents 
that can only reach a single target is insufficient because of the molec-
ular complexity and defense systems of the disease. Combination ther-
apy, defined as the simultaneous administration of two or more 
pharmacologically active medicines with various mechanisms of action, 
is acknowledged as a more effective method for treating diseases. Owing 
to their planar architectures and large surface areas, graphene and GO 

Table 3 (continued ) 

Category Drug Graphene-based composite/conjugate Inference/highlights Reference 

Antimigraine Sumatriptan succinate CS/TPP/GO/SS. With less drug leakage in the stomach, CS/TPP/GO beads can 
efficiently carry the medicine to the intestine. The 
nanocomposite’s cytotoxicity and antibacterial characteristics 
were evaluated, and the findings showed that the CS/TPP/GO 
nanocomposite hydrogel beads were biocompatible. 

[110]  

Fig. 5. Graphene oxide (GO) NPs had their surfaces changed, and then a drug 
and photosensitizer were loaded onto the modified GO-metal NPs [modified 
from Sharma et al., 2020 [169]. 

Fig. 6. The possible hypothesis of cytotoxicity of GOs modified from Ou et al. 
(2016) [170]. 

Fig. 7. Nanoplatform TRAIL/DOX-fGO scheme. TRAIL/DOX-main fGO’s com-
ponents (A) and its step-by-step action (B), from drug injection in the vessel to 
drug release in the cell nucleus; Modified based on work by Jiang et al. (2015) 
[172] and Hoseini-Ghahfarokhi et al. (2020) [173]. 
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have a unique ability to load a variety of medicines and receptors 
[218–220]. Consequently, these materials have been used to create 
multifunctional drug delivery platforms for combination therapies. 
Fig. 10 schematically illustrates the concept of multifunctional graphene 
and GO-based drug carriers. This multipurpose drug delivery system 

may provide a variety of therapeutic options, antibodies for cell tar-
geting, and fluoroprobes for monitoring nanocarriers inside cells. Along 
with being used for biomedical imaging and cancer-specific drug 
administration, GO with and without a fluoroprobe can also be used as a 
possible cancer biomarker sensor [221]. 

5.7. GO in the treatment of POCD 

Postoperative cognitive dysfunction (POCD) is a common compli-
cation of surgery and anesthesia that affects the central nervous system. 
This was marked by a decrease in cognitive performance. POCD is often 
seen in older people who often have trouble focusing, remembering, and 
learning after surgery. POCD is caused by a complex chain of events, 
including the buildup of amyloid beta (Aβ), hyperphosphorylation of tau 
protein, inflammation, synaptic dysfunction, and blocking of central 
cholinergic transmission. Therefore, the Aβ burden is one of the most 
studied topics in POCD. After surgery, cognitive problems in older mice 
can be resolved using drugs that prevent the buildup of Aβ in the brain. 
Inhaled isoflurane also changes how amyloid precursor protein (APP) is 

Fig. 8. For an illustration of the antiviral action of functionalized graphene QDs, Virus-related disorders are brought about by the S protein of the virus (HCoV-229E) 
interacting with the host cell receptor. The presence of ODs may reduce the effectiveness of such binding. This method can halt the replication of the viral genome 
modified by Seifi T et al. (2021) [177]. 

Table 4 
Delivery of genes and biomolecules using graphene based materials  

GO 
composite 

Gene Conclusion of the study References 

GO/PVA VB-12 pH-sensitive polymer, suitable 
for cancer atmosphere 

[199] 

PAA-GO BCNU The multiuse transporter 
improved the drug’s 
temperature steadiness and 
dramatically increased the half- 
life. 

[200] 

PPG Adriamycin (ADR), 
miR-21 

Dramatically increased ADR 
upregulation in MCF-7/ADR 
resistant cells, resulting in 
abundant cell toxicity than free 
ADR. 

[201] 

Ti-GO- 
BMP2 

BMP2 protein In in-vivo mice investigations, 
GO-coated Ti surfaces appear to 
be an excellent transporter for 
the therapeutic protein BMP2, 
resulting in increased variation 
of humanoid MSCS and strong 
new bone growth. 

[202,203] 

PEG-GO Proteins 
ribonuclease A & 
protein kinase A 

Protein distribution into cells 
lacking enzymatic degradation 
or loss of biological function. 

[204] 

PEI-Go Gene delivery Functionalization with GO 
decreases the harmful 
properties of PEI while 
increasing transfection efficacy. 

[205,206] 

PEI-GO siRNA MDA-MB-231 human breast 
tumor (in vitro). Effectiveness of 
siRNA delivery 

[207] 

PEI–GO siRNA, DOX 
sequential delivery 

Co-administering. of a gene and 
a drug in a sequential manner by 
more transfection efficacy and 
improved antitumor 
effectiveness. 

[208] 

PEG–GO Proteins 
ribonuclease 

A and protein kinase A 
Intracellular protein transfer 
without the enzymatic 
breakdown of biological 
function. 

[209]  

Fig. 9. Applications of GOs in Biotechnology (modified from Jamie. J. Grant 
et al. (2021) [217]. 
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processed in human cell lines and causes them to produce more Aβ. 
These studies have shown that Aβ plays a key role in the development 
and pathology of POCD. Therefore, focusing on Aβ may be a good way to 
treat POCD. It was found that GO treatment reduced Aβ levels the most 
by reducing Aβ and making it break down faster. Surgery and anesthesia 
caused a sudden increase in the amount of Aβ in the hippocampal region 
and a loss of fear memory in mice that were 10 months old. However, the 
ntake of GO significantly decreased the amount of Aβ in the hippocampi 
and improved their ability to think. These results showed that GO could 
help POCD by preventing mice from receiving too much Aβ. This 

provided a evidence that GO-based nanomedicines, such as those for 
Parkinson’s and Alzheimer’s disease, could be used to treat diseases 
related to Aβ [222]. 

5.8. Toxicity and biocompatibility of graphene-based nanomaterials 

Recent studies have focused on the toxicity and biocompatibility of 
graphene-based nanomaterials, both in vivo and in vitro. Two under-
lying factors have a significant impact on how different types of gra-
phene interact with cell membranes: cell type and graphene morphology 
(lateral size, surface structure, functionalization, charge, impurities, 
aggregations, and chemical compositions). To further explain this, it was 
revealed that 10 nm thick graphene sheets may enter cells by pene-
trating them edge-first through their cell membranes and later accu-
mulated in lungs epithelial cells and macrophages. However, GO 
typically exhibits low cytotoxicity at doses below 4 μg/mL. Additionally, 
rGO is less cytotoxic than GO, even at higher concentrations. This 
cytotoxicity may be the result of oxidative stress caused by the sharp 
edges of the nanoparticles, which damage the membranes. In accor-
dance with earlier studies, the size of particles and the level of aggre-
gation also affect GO cytotoxicity. Apoptosis, autophagy, necrosis, 
physical destruction, oxidative stress, DNA damage, and inflammatory 
response are the processes that underlies the toxicity of graphene-based 
nanomaterials [171,223]. In addition to toxicity, biocompatibility must 
be considered while exploring graphene-based nanomaterials for in vivo 
use or other biomedical applications. Studies have revealed that the 
dispersibility and solubility of graphene increase, as does its biocom-
patibility. GO sheets have many hydrophilic groups, such as carboxyl, 
hydroxyl, and epoxy groups, on their edges and basal planes, which 
significantly enhance their hydrophilicity. Additionally, hydrophilic 
agents applied to the surfaces of both graphene and GO have been 
claimed to significantly improve their biocompatibility [224]. 
Gelatin-modified graphene nanosheets were found to be biocompatible 
in the MCF-7 cell line and exhibited strong anticancer properties when 
loaded with DOX. It has been demonstrated that other modified types of 
GO, such as those with folic acid conjugation and sulfonic acid group 
modification, are biocompatible. Thus, the findings indicate that the 
toxicity, shape, and surface functionalization of graphene are inextri-
cably linked with all factors, and the investigations are compared in 
accordance with biocompatibility. A comparison of functionalized and 
nonfunctionalized graphene-based nanomaterials revealed that the 
latter is far more hazardous [173,225–229]. 

6. Conclusion and future prospective 

Nanomaterials can be used to deliver drugs in a controlled manner, 
and most of their recent work has focused on making nanomaterials 
based on graphene. Nanomaterials made of graphene have been shown 
to improve drug loading and release in a better way. Adding other 
nanoscale building blocks to graphene or GO, such as small molecules, 
nanoparticles, polymers, DNA, proteins, and peptides, could improve 
biomedical applications and drug delivery systems. Because graphene 
has a unique structure (2D, a single layer) and properties, its use in 
medicine will grow as it becomes easier and cheaper (high stability, 
strong conductivity, easy modification). In recent years, many studies 
have examined how graphene-based nanomaterials can be used to 
deliver drugs. However, some areas still require further research. The 
methods used to prepare monolayer graphene (GO and rGO) and the 
biomolecular changes that occur, such as those involving proteins, 
peptides, DNA, and other molecules, need to be improved. Monolayered 
graphene-based bio-nanohybrids show promise for applications in drug 
delivery, biosensing, and tissue engineering. The development of novel, 
perfectly compatible nanomaterials using graphene and its associated 
materials is a state-of-the-art tool that could pave the way for a revo-
lutionary method for drug delivery and regenerative medicine. The core 
of every decision-making process continues to be weighing production 

Fig. 10. Schematic of multifunctional graphene and GO nanocarriers illus-
trating the loading of several drugs, a receptor (antibody) for cell targeting, and 
a probe for imaging (tracking) the carrier inside the cell (Modified from Jing-
quan et al., 2013) [221]. 

Graph 1. Number of articles containing the search term “Graphene” in the 
defined time period during 2011–2021 (Science direct database). 

Graph 2. Number of articles containing the search term “Graphene as a 
Nanocarrier” in the defined time period during 2011–2021 (Science 
direct database). 
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methods against cytotoxicity and performance, and graphene materials 
are becoming increasingly popular in cutting-edge medicine. Graphe-
ne’s exceptional electrical properties and excellent tunability provide a 
foundation for expanding the material’s use in biological context. These 
elements might increase their viability and open the door to a pros-
perous future for graphene-based materials. Graphene-based nano-
materials should be studied to determine whether they are safe for living 
things and whether they are harmful to cells over time. Even though, 
most research in these days focuses on obtaining medications for drugs, 
graphene-based nanomaterials can be used to diagnose and treat Par-
kinson’s, Alzheimer’s, and many other diseases, such as antibacterial, 
antibiotic, antiemetic, antimicrobial, antidiabetic, antituberculosis, 
NSAIDs, H2 blockers, bronchodilators, and antimigraine. 
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