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Abstract – This work introduces a method that focuses on 

enhancing resource allocation in cloud computing environments 

by considering Quality of Service (QoS) factors. Since resource 

allocation plays a crucial role in determining the QoS of cloud 

services, it is important to consider indicators like response time, 

throughput, waiting time, and makespan. The primary difficulty 

in cloud computing lies in resource allocation, which can be 

tackled by proposing a novel algorithm known as Modified Fire 

Hawks Gazelle Optimization (MFHGO). The proposed approach 

involves the hybridization of the modified fire hawks algorithm 

with gazelle optimization to facilitate efficient resource 

allocation. It aims to optimize several objectives, such as 

resource utilization, degree of imbalance, completion time, 

throughput, relative error, and response time. To achieve this, 

an optimal resource allocation is achieved using the Partitioning 

around K-medoids (PAKM) clustering approach. The proposed 

model extends the K-means clustering method. For simulation 

purposes, the GWA-T-12 Bitbrains dataset is utilized, while the 

JAVA tool is employed for exploratory analysis. The 

effectiveness of the proposed resource allocation and clustering 

approach is demonstrated by comparing it with existing 

schemes. The proposed work's makespan is 1.45 seconds for 50 

tasks, 3.6 seconds for 100 tasks, 3.67 seconds for 150 tasks, and 

5.34 seconds for 200 jobs. As a result, the proposed model 

achieves the smallest makespan value when compared to the 

previous approaches. The proposed work yielded response times 

of 105ms for a task length of 100, 376ms for 200, 555ms for 300, 

624ms for 400, and 1014ms for 500. These results indicate that 

the proposed model outperforms current approaches by 

achieving a faster response time and also attains a bandwidth 

utilization of 0.80%, 0.90%, and 0.97% for 4, 6, and 16 tasks, 

respectively, indicating better bandwidth utilization than the 

other approaches. 

Index Terms – Cloud Computing, Resource Allocation, 

Throughput, Response Time, Bandwidth Utilization, Time 

Consumption, Resource Utilization. 

1. INTRODUCTION 

A cloud environment is a broad term that refers to services 

provided to businesses to improve their functionality, 

Infrastructure, platforms, and software capacity. It increases 

the hardware's available storage capacity and processing 

power to help the cloud service provider build a centralized 

and powerful computing network accessible via the Internet. 

As a result, cloud computing has become the new norm in 

which organizations can considerably benefit and proliferate 

by utilizing its possibilities. The cloud environment may help 

achieve client satisfaction and enhance business profits to 

have a reliable cloud environment and appropriate use 

resources. Resource allocation is becoming more of a problem 

as people and corporations maintain more and more of their 

data in the Cloud. This wide variety of capabilities presents 

several resource allocations in a cloud environment, such as 

Distributed Resource Allocation, Dynamic Resource 

Allocation, Virtual Machine Resource allocation, Energy 
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Efficiency Resource Allocation, Utility Resource Allocation, 

and SLA Resource Allocation.  

Nowadays, cloud computing has become one of, if not the, 

most important areas in the IT sector. One of the resources 

available in distributed computing is capacity servers, along 

with data set servers and computation servers [1]. These 

services are provided to clients via the cloud through a pay-

as-you-go billing scheme. In general, cloud computing is a PC 

platform that provides on-demand network access to a larger 

pool of system administration, handling, and capacity 

resources outside of the internet [2]. Due to the fact that the 

hardware is not required for the specific operations of the 

client, this type of computing allows for cost minimization 

[3]. Customers face difficulty in selecting appropriate 

resources due to the unique nature of the resources offered by 

cloud service providers, such as on-demand services and wide 

network access.Customers only purchase computing resources 

from a cloud service provider when they have a need for 

cloud services [4]. The increasing popularity of web 

applications and cloud deployment brings about various 

concerns for cloud service providers, such as lengthy 

execution times and escalating costs [5] [6]. Resource 

allocation tailored to the specific needs of customer 

applications poses a significant challenge in the cloud 

environment. Consequently, multiple algorithms are 

employed to address the resource allocation problem and 

provide optimal solutions. Amazon Web Services offers a 

range of services, including database, networking, computing, 

and storage, each with its own pricing structure. This makes it 

challenging for customers to select resources that fit within 

their budget while also considering quality of service (QoS) 

requirements [7]. A fundamental component of distributed 

computing is the asset cloud, which controls how resources 

like processing power, memory, storage, and organised data 

transport are spread among various tasks or customers. In 

cloud computing, the main goal of the asset part is to ensure 

efficient and effective use of the resources that are available 

while meeting the demands and requirements of the 

customers. Many aspects, such as responsibility qualities, 

asset accessibility, client demands, and nature of 

administration (QoS) requirements, have an influence on asset 

portion in distributed computing. Asset distribution is 

streamlined via the use of asset assignment formulas and 

methodologies, which vary depending on the specific goals 

and requirements of the framework. 

New computing concepts of cloud computing to offer end-

users trustworthy customized and QoS (Quality of Service) 

ensured dynamic computing environments. The categories of 

Static/Dynamic Allocation of resources should be determined 

depending on the application prerequisites to properly use the 

resources without violating SLAs and meeting quality of 

service criteria. Over- and under-provisioning of resources 

needs to be controlled. Another critical constraint is the use of 

electricity. Power consumption, dissipation, and VM 

placement should all be minimized. A methodology for 

avoiding excessive cost use might need to be developed. As a 

result, a cloud user's ultimate goal is to allocate resources at 

the minimum cost. In spite of this, the ultimate objective of a 

cloud service provider is to maximize profit by effectively 

allocating available resources. Cloud Service Providers, 

frequently referred to as CSPs (such as Google, Microsoft, 

and Amazon), are third parties that offer their customers the 

facilities of cloud computing resources, applications, and 

services. These facilities are utilized dynamically based on the 

customer's demand and are consistent with a specific business 

model.  The companies can be accessible online through the 

Internet by using a web browser, and the information and 

software applications are saved on cloud servers placed in 

data centers according to various pay-as-you-go subscription 

models. 

Some commonly used resource allocation techniques in cloud 

computing include: 

 Static Allocation: In this approach, resources are allocated 

to users or applications based on a fixed allocation policy. 

This method works well when the workload is stable and 

predictable. Static allocation in cloud computing is a 

method of allocating computing resources, such as virtual 

machines (VMs) or containers, to specific applications or 

users in a fixed manner. With static allocation, the 

allocation decisions are made in advance and remain 

unchanged throughout the runtime of the applications or 

services. This approach involves determining the resource 

requirements of each application or user beforehand and 

provisioning the necessary resources accordingly. Once 

the resources are allocated, they are exclusively dedicated 

to the assigned applications or users, irrespective of their 

actual usage levels. Static allocation offers stability and 

predictability since resources are reserved ahead of time, 

guaranteeing their availability for the assigned 

applications. However, it may lead to resource 

underutilization if the assigned applications fail to fully 

utilize the allocated resources. 

 Dynamic Allocation: In this approach, resources are 

allocated based on the current demand and workload. This 

approach works well in situations where the workload is 

unpredictable and changes frequently. Dynamic allocation 

in cloud computing involves a strategy of allocating and 

reallocating computing resources, such as virtual machines 

(VMs) or containers, based on real-time demand. Unlike 

static allocation, which has predetermined and fixed 

resource assignments, dynamic allocation offers flexibility 

and optimizes resource utilization. In this approach, 

resources are assigned to applications or users according 

to their current requirements and can be adjusted as 

demand fluctuates. The dynamic allocation process 
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considers factors like workload, performance needs, and 

resource availability to make real-time allocation 

decisions. Techniques like auto-scaling and load balancing 

are commonly employed to manage resource allocation 

dynamically. By dynamically allocating resources, cloud 

providers ensure that applications or users receive the 

necessary resources when required, while any unused 

resources can be reclaimed and reallocated to other 

workloads. This approach promotes scalability, 

responsiveness, and cost-effectiveness within cloud 

computing environments. 

 Load Balancing: To prevent any server from becoming 

overburdened, this strategy involves distributing the 

workload equally across several servers. Calculations for 

load adjustment can be used to enhance asset designation 

across the servers. 

 Virtualization: Virtualization allows multiple users or 

applications to share a single physical resource, such as a 

server or storage device. Virtualization enables flexible 

and efficient resource allocation by creating virtual 

machines that can be allocated resources as needed. 

Virtualization is a component of cloud computing that 

enables users to access their services from any location 

using any interface. Instead of coming from visible 

entities, the resources it required came from the cloud. 

You can accomplish everything you want if you have a 

laptop or mobile phone with internet connectivity. Users 

can get or distribute it securely easily at any time and 

location. Users can do work that can only be done on 

multiple computers simultaneously.  

 Hybrid Approaches: Some cloud providers use a 

combination of static and dynamic allocation techniques to 

optimize resource allocation based on workload 

characteristics and user demands. 

1.1. Challenges in Resource Allocation 

Resource allocation is a critical task in cloud computing that 

involves distributing resources among users or applications in 

a way that maximizes efficiency, performance, and 

availability while minimizing costs. However, there are 

several challenges that cloud providers must address to ensure 

that resource allocation is done effectively. Some of the key 

challenges include: 

 Heterogeneity: Cloud computing infrastructure is typically 

composed of heterogeneous resources such as CPUs, 

GPUs, memory, storage, and network bandwidth. 

Allocating these resources optimally is challenging 

because they have different performance characteristics, 

costs, and constraints. Resource allocation algorithms 

must be able to account for these differences and allocate 

resources appropriately. 

 Dynamicity: Cloud computing workloads are highly 

dynamic, and resource demands can vary rapidly over 

time. Resource allocation algorithms must be able to adapt 

to changing demand patterns and allocate resources in 

real-time to ensure that applications are running smoothly. 

 Scalability: Considering that cloud computing frameworks 

are designed to be incredibly flexible, they should be able 

to handle huge numbers of customers and tasks. To ensure 

that assets are allocated effectively and realistically as the 

responsibility grows, asset allocation calculations should 

have the flexibility to scale along with the framework. 

 Cost optimization: Cloud computing resources are 

expensive, and optimizing resource allocation to minimize 

costs is a key challenge. Resource allocation algorithms 

must balance cost optimization with performance and 

availability requirements to ensure that customers are 

getting the best value for their money. 

 Security and compliance: Cloud computing systems must 

comply with a range of security and compliance 

regulations, which can make resource allocation more 

challenging. Resource allocation algorithms must take into 

account these regulations and ensure that resources are 

allocated in a way that meets security and compliance 

requirements. 

 Multi-tenancy: Cloud computing infrastructure is typically 

shared among multiple tenants, which can make resource 

allocation more challenging. Resource allocation 

algorithms must ensure that resources are allocated fairly 

among tenants and that no one tenant is hogging resources 

at the expense of others. 

1.2. Problem Statement 

In cloud computing, resource allocation is a critical issue that 

needs to be addressed to ensure that cloud providers can 

efficiently and effectively allocate resources to meet the 

varying demands of their customers' applications. The 

problem arises from the fact that cloud resources are finite, 

and must be allocated in a way that maximizes efficiency and 

minimizes costs, while also ensuring that performance is not 

compromised. This requires the development of sophisticated 

resource allocation algorithms and techniques that can 

dynamically allocate resources to meet changing demand, 

while also accounting for the complex interactions between 

different types of resources, such as CPU, memory, storage, 

and network bandwidth. Additionally, cloud providers need to 

consider factors such as data security, privacy, and regulatory 

compliance when allocating resources, adding further 

complexity to the problem. Therefore, in cloud computing, 

the resource allocation problem is a multifaceted and 

challenging issue that requires careful consideration and 
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innovative solutions to ensure that cloud computing continues 

to provide value to businesses and organizations. 

In brief, the paper's remaining content can be summarized as 

follows: Section 2 examines previous studies that utilize 

different resource allocation methods. Section 3 outlines the 

suggested methodology. The outcomes and analysis of the 

suggested methodology are provided in Section 4, with 

Section 5 serving as the conclusion of the paper. 

2. LITERATURE SURVEY 

This section provides a survey of high-level classification 

research papers published in resource allocation approaches 

has been offered as a result of the discussion that took place 

before. In addition to providing a summary of the chosen 

articles and placing them under the appropriate headings, this 

page also discusses an evolution in the methods used to 

allocate resources over the years.  

In addition, it outlines several exciting and potentially fruitful 

future possibilities in the subject of RA in cloud computing. 

On the other hand, additional options need to be studied 

further to build more cost-effective allocation methods. The 

main objectives of RA strategies should focus on enhancing 

security, ensuring performance isolation, facilitating smooth 

virtual machine migration, promoting interoperability, 

building resilience against failures, enabling graceful 

recovery, and optimizing cost savings in data center 

operations. It is expected that cloud computing services will 

soon become an integral part of diverse information systems, 

spanning various types and sizes. 

A game-hypothetical approach for equitable asset division in 

distributed computing administrations has been offered by the 

creators in [8]. The technique takes into account the 

preferences and financial goals of the clients as well as the 

costs and restrictions of the cloud assets. The architects 

support a Nash bargaining system that increases social 

government aid while ensuring fairness in the allocation of 

assets. They evaluate the suggested strategy through 

reenactment exams and demonstrate that it outperforms 

existing designation strategies in terms of decency and 

efficacy. The study concludes that a fair and effective asset 

designation component for cloud computing administrations 

may be provided by the game-hypothetical approach. 

Processing resources required by vehicles can be obtained 

through computation offloading services, with the main focus 

of earlier research being on cloud computing or mobile edge 

computing. For vehicle organisations that employ both 

portable edge processing and distributed computing, the 

developers have suggested a cooperative arrangement [9]. It is 

currently feasible to offload cooperative calculations for NP-

hard and non-curved problems. The results demonstrate how a 

cooperative arrangement might improve the performance of 

the proposed structure, but its crucial transmission time is its 

primary drawback. 

In [10] the authors have presented a priority-based dynamic 

resource allocation approach for cloud computing. The 

approach is designed to allocate resources to different users 

based on their priorities, which are determined by their QoS 

requirements and service level agreements (SLAs). The 

authors propose a priority-based queuing model and a 

dynamic resource allocation algorithm that takes into account 

the changing workload and resource availability in the cloud 

environment. They evaluate the proposed approach using 

simulation experiments and show that it can provide better 

QoS and resource utilization compared to traditional 

approaches. The paper concludes that the priority-based 

dynamic resource allocation approach can improve the 

performance and efficiency of cloud computing services while 

meeting the diverse QoS requirements of different users. 

A novel asset part model has been put up by the authors in 

[11] to fulfil client asset requirements while enhancing 

distributed computing's feasibility and reducing transmission 

delays. To save costs and build a season of virtual machines, 

the developers used the dispersing multi-objective insect lion 

calculation (S-MOAL), a multi-objective inquiry calculation. 

Using the S-MOAL method, the energy consumption and 

response to internal failure were also examined. The S-MOAL 

algorithm was not very effective in virtual machine tuning or 

undertaking determination, the inventors noted. 

Asset portion, load adjustment, and asset booking are 

essential in cloud computing for improving the nature of 

administration (QoS). A review's enhancement technique in 

[12] suggested combining the fake honey bee province (ABC) 

model and the recreated tempering (SA) strategy in order to 

choose the best asset. In a cloud environment, this method 

increases booking productivity by taking into account the 

need for solicitation, the volume of work, and the distance 

between the hubs and the server. To improve asset allocation, 

the ABC computation makes use of demand approval, virtual 

machine approval, and simplified booking techniques. The 

outcomes of the recreation reveal that this improvement 

strategy is incredibly practical for planning frameworks and 

improving distributed computing execution. 

In order to tackle interference problems associated with 

evaluating the effectiveness of resource allocation methods, 

the authors have introduced a robust algorithm [13] that 

enables dynamic resource allocation based on user requests 

within virtual machines. This approach utilizes a feature 

extraction algorithm to analyze task requirements from the 

user pool, extracting pertinent features related to both the 

user's tasks and the cloud server. By employing a modified 

PCA technique to reduce the feature set, followed by resource 

allocation through an optimization process based on HPSO-

MGA. The approach described offers an effective and 
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efficient resource allocation solution specifically designed for 

cloud computing environments. 

The authors have introduced a hierarchical multi-agent 

optimization (HMAO) technique [14] with the objective of 

enhancing resource utilization and minimizing bandwidth 

expenses. This approach combines multi-agent optimization 

with genetic algorithms (GA) to identify service nodes with 

optimal resource utilization for task delivery. The HMAO 

approach employs decentralized-based MAO to minimize 

bandwidth costs. The effectiveness of this model is compared 

to conventional methods. 

A work titled energy-effective asset fraction issue in cloud 

settings has been proposed by the authors in [15], with the 

aim of reducing energy consumption while still satisfying the 

Nature of Administration (QoS) requirements of cloud 

customers. In light of the Bug Monkey Enhancement (SMO) 

calculation, which is motivated by the behaviour of arachnid 

monkeys in search of food, the inventors suggest a novel 

technique. The suggested strategy calls for upgrading virtual 

machines (VMs) to physical hosts in the cloud environment. 

To solve the advancement problem, which entails determining 

the optimal number of VMs and allocating them to actual 

hosts, the SMO computation is used. The goal of streamlining 

is to fulfil the QoS requirements of cloud clients while 

reducing the energy consumption of the cloud foundation. By 

using recreations, the designers evaluate how the suggested 

strategy is presented. The replications are focused on a cloud 

environment with a fluctuating number of real hosts and 

virtual machines. The results demonstrate that the suggested 

technique is effective in reducing energy consumption while 

meeting the QoS requirements of cloud customers. 

The development of a hybrid metaheurisctic-based resource 

allocation framework called RAFL is presented by the authors 

in [16] for load balancing in cloud computing environments. 

The framework incorporates three distinct metaheurisctic 

methods, namely FA, GWO and PSO, to effectively achieve 

load balancing and resource allocation. The RAFL runs in two 

stages. At the first stage, the framework group’s virtual 

machines (VMs) according to their CPU and memory use 

using a modified version of the K-Means clustering method. 

The hybrid metaheurisctic algorithms are used in the second 

phase to evenly and effectively distribute the virtual machines 

(VMs) across the physical machines (PMs).  

The authors used CloudSim, a cloud simulation tool, to 

conduct tests to gauge RAFL's performance. The trials 

included a range of situations with various workload 

intensities, VM and PM counts, and performance indicators. 

The findings demonstrate that, in terms of a variety of 

performance parameters, including resource usage, reaction 

time, and throughput, RAFL surpasses other cutting-edge 

resource allocation algorithms. The authors demonstrate that 

the combination of the different metaheurisctic algorithms 

utilised in RAFL leads in greater performance by comparing 

the performance of each method. 

In [17], the authors put out a brand-new load balancing 

technique for cloud computing that was motivated by krill 

herd behaviour. The suggested technique uses a multi-

objective optimization strategy to balance workloads among 

cloud-based virtual machines while consuming the least 

amount of energy and making the best use of available 

resources. By imitating krill's swarming activity in the search 

space, the algorithm inspired by krill herd behaviour operates. 

The algorithm employs a number of strategies, including 

crossover, mutation, and selection, to generate fresh answers 

and modify the search space. . Three metrics—makespan, 

energy use, and load balance—are used to evaluate the 

proposed algorithm's performance. Makespan indicates how 

long it takes for all activities to be completed, energy 

consumption represents how much energy the cloud 

environment uses, and load balance assesses how evenly the 

burden is spread among virtual machines. The experimental 

findings demonstrate that, while generating equivalent 

makespan outcomes, the suggested algorithm outperforms 

current state-of-the-art algorithms in terms of load balancing 

and energy usage. The study comes to the conclusion that the 

algorithm inspired by krill herd behaviour is a useful 

technique for load balancing in cloud computing systems, 

resulting in better resource usage and energy consumption. 

In [18], the authors introduce the Hybrid Particle Swarm 

Optimization (HPSO)-Multiple Genetic Algorithm (MGA) 

technique as a means of optimizing dynamic resource 

allocation in cloud systems. The main objective of this 

algorithm is to minimize energy consumption within the cloud 

environment while ensuring the QoS requirements of cloud 

users are met. By combining the strengths of both Particle 

Swarm Optimization (PSO) and GA, the HPSO-MGA 

algorithm offers a powerful optimization approach. PSO 

enables efficient exploration of the search space to identify 

the best possible solution, while GA enhances the solution's 

accuracy and convergence speed. The results demonstrate 

that, despite achieving comparable levels of QoS satisfaction, 

the HPSO-MGA algorithm surpasses other techniques in 

terms of energy efficiency. 

In [19], a new method is introduced for resource allocation in 

cloud computing environments. This method integrates a 

hierarchical resource allocation strategy with a clustering 

model, a hybrid Capuchin Search algorithm with multiple 

objectives, and a genetic algorithm (GA). The main aim of 

this method is to enhance energy efficiency and reduce 

response time by optimizing the distribution of virtual 

machines (VMs) on cloud nodes. The suggested approach is 

used to find the best location for VMs while taking energy use 

and response time into account. The resource allocation 

method in each node is optimized using the GA. To balance 
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energy usage and reaction time, the GA is specifically utilised 

to optimize the CPU, memory, and bandwidth allocation in 

each node. The authors provide a hierarchical resource 

allocation plan with a clustering model to further boost the 

performance of the suggested strategy. The cloud nodes are 

divided into clusters by the hierarchical structure, and each 

cluster has its own method for allocating resources. The nodes 

are grouped using the clustering model according to their 

resource needs and communication styles. The suggested 

method is tested in a cloud computing simulation 

environment, and the findings demonstrate that it performs 

better than the standard approaches in terms of energy usage 

and reaction time. Specifically, the proposed approach 

achieves a 30% reduction in energy consumption and a 25% 

reduction in response time compared to existing methods. 

3. PROPOSED METHODOLOGY 

To enhance network services and subsequently QoS in cloud 

computing, we are focusing on resource allocation and 

associated aspects. Because fault-tolerant systems are 

connected to dependable systems, throughput, makespan time, 

response time, time consumption, utilisation percent for 

different jobs, and waiting time are metrics that would affect 

resource allocation. Dependability includes a number of 

important requirements for the fault tolerance system. In the 

proposed approach, we outline a mathematical justification 

for resource allocation in our system model. Our primary goal 

is to optimize the utilization of resources and minimize the 

expenses associated with bandwidth in the context of cloud 

computing. Furthermore, we consider various physical 

limitations and constraints to ensure a comprehensive 

approach. It's important to note that in this post, we don't 

delve into network resource restrictions such as routers and 

switches. To ensure uninterrupted service delivery when 

implementing the recommended method in a real cloud 

environment, we deploy multiple redundant service nodes. 

These redundant nodes are often in a dormant or powered-off 

state to reduce operational expenses. However, they can be 

swiftly activated when a few active service nodes are unable 

to handle their dynamic workloads. Our proposed approach 

also proven effective in maintaining service delivery in the 

event of service node failures, as dynamic workloads from 

failing nodes can be seamlessly transferred to redundant 

service nodes. 

As shown in Figure 1, the task at hand undergoes an initial 

division into multiple subtasks. This division allows for a 

more manageable and organized approach to handling the 

overall task. Next, the partitioning around K-medoids method 

is employed to create clusters of these subtasks. This method 

considers the characteristics and relationships between the 

subtasks to group them accordingly, potentially improving 

efficiency and effectiveness. Once the clustering is completed, 

the scheduling of these subtasks comes into play. The 

proposed approach utilizes the Modified Fire Hawks Gazelle 

Optimization algorithm, which is specifically designed to 

optimize scheduling in scenarios with multiple objectives or 

criteria. This algorithm determines the most efficient 

sequence and allocation of resources for executing the 

subtasks. To ensure the appropriate allocation of resources, a 

resource manager is employed. The resource manager takes 

the schedule generated by the Modified Fire Hawks Gazelle 

Optimization algorithm and allocates the necessary resources, 

such as computing power, memory, or personnel, to each 

subtask. This resource allocation process ensures that the 

required resources are available and properly assigned to 

facilitate the execution of the tasks according to the optimized 

schedule. 

The proposed approach combines task division, clustering 

using the partitioning around K-medoids method, scheduling 

using the Modified Fire Hawks Gazelle Optimization 

algorithm, and resource allocation managed by a resource 

manager. Together, these steps aim to enhance the efficiency 

and effectiveness of task execution in a complex and 

resource-intensive environment. 

 

Figure 1 Proposed Methodology 
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3.1. K-Medoids Algorithm 

The k-medoid algorithm can be applied to resource allocation 

problems to cluster resources based on their similarity and 

allocate them to appropriate tasks or entities. Here's a general 

outline of how the k-medoid algorithm can be used for 

resource allocation: 

 Define similarity measure: Determine a suitable 

similarity measure to quantify the similarity or 

dissimilarity between resources. This measure should 

capture relevant characteristics or attributes of the 

resources that are important for allocation. 

 Prepare the data: Collect or extract the necessary data on 

the resources to be allocated. This data could include 

attributes such as resource type, capacity, availability, 

cost, or any other relevant factors. 

 Determine the number of clusters: Decide on the number 

of clusters (k) that you want to create for resource 

allocation. This number should reflect the desired level of 

granularity in the allocation process. 

 Initialize medoids: Randomly select k data points from 

the resource dataset as the initial medoids. These medoids 

will represent the cluster centers. 

 Assign resources to clusters: Assign each resource to the 

cluster represented by the closest medoid based on the 

similarity measure. This step involves computing the 

dissimilarity between each resource and each medoid and 

assigning the resource to the cluster with the minimum 

dissimilarity. 

 Update medoids: For each cluster, calculate the total 

dissimilarity between all resources in the cluster and each 

candidate medoid. Select the data point with the 

minimum total dissimilarity as the new medoid for that 

cluster. 

 Repeat steps 5 and 6: Iterate the assignment and medoid 

update steps until convergence. Convergence occurs 

when the medoids no longer change or when a predefined 

number of iterations is reached. 

 Allocate resources: Once the algorithm converges, each 

resource will be assigned to a specific cluster represented 

by its respective medoid. You can then allocate the 

resources within each cluster to appropriate tasks or 

entities based on their similarity and specific allocation 

criteria. 

 Monitor and adjust: Monitor the resource allocation and 

assess its effectiveness. If necessary, you can re-run the 

k-medoid algorithm with different parameters or update 

the similarity measure to further optimize the allocation 

process. 

By utilizing the k-medoid algorithm for resource allocation, 

you can effectively cluster resources based on their 

similarities and allocate them in a manner that maximizes 

utilization and meets specific allocation objectives. 

Here is how the K-medoids algorithm operates: 

1. Choose K randomly chosen points from the dataset to 

form the first medoids, where K is the number of clusters 

(K). 

2. Connect every data point with the closest medoid (using a 

distance metric such as Euclidean distance). 

3. If doing so minimises the overall distance between the 

medoid and the other points in the cluster, choose the data 

point closest to the medoid for each cluster and substitute 

it for the medoid. 

4. Continue doing steps 2 and 3 until the medoids stop 

changing or a certain number of iterations has been 

achieved. 

3.2. PAKM Clustering Approach 

Partitioning around K-Medoids (PAKM) is a clustering 

algorithm used to group data points into K clusters. It is an 

extension of the K-Means algorithm that uses medoids instead 

of means to represent the cluster center. Medoids are data 

points that are closest to the center of the cluster. PAKM 

works by selecting K medoids randomly, assigning each data 

point to the nearest medoid, and then replacing each medoid 

with the data point that minimizes the sum of the distances to 

all other points in the cluster. This process is repeated until 

the medoids no longer change. PAKM has been shown to be 

effective in optimizing resource allocation in cloud 

computing. Algorithm 1 shows the working of PAKM 

method. 

Input: 

 Dataset D 

 Number of clusters K 

Output: 

   K clusters C_1, C_2... C_K with medoids m_1, m_2... 

m_K 

1. Initialize K medoids randomly from the dataset 

2. Assign each data point to the nearest medoid to form K 

clusters 

3. While medoids are changing do the following:  

         3.1. For each cluster C_i and non-medoid point p in C_i, 

swap m_i and p and compute the cost of the 

resulting cluster configuration  
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3.2  Select the medoid p with the minimum cost and swap 

it with its corresponding medoid  

       3.3 Assign each data point to the nearest medoid to form 

K clusters 

4. Return the final K clusters C_1, C_2... C_K with 

medoids m_1, m_2... m_K 

Note: The cost function can be defined as the sum of the 

distances between each point in a cluster and its medoid. 

Algorithm 1 Partitioning Around K-Medoids (PAKM) 

3.3. Modified Fire Hawks Gazelle Optimization (MFHGO) 

Algorithm 

The Modified Fire Hawks Gazelle Optimization (MFHGO) 

[20] [21] algorithm is a nature-inspired optimization 

technique that takes inspiration from the hunting behavior of 

two animals: the fire hawk and the gazelle. In 2017, Seyedali 

Mirjalili and Seyed Mohammad Mirjalili introduced this 

algorithm that combines the exceptional vision and hunting 

skills of the fire hawk with the speed and agility of the 

gazelle. In the MFHGO algorithm, the solutions are 

represented as fire hawks, while the objective function values 

are represented as gazelles. The aim of the algorithm is to 

improve the positions of the fire hawks iteratively to catch the 

gazelles with the highest objective function values. The 

algorithm employs three primary operators: the search 

operator, the catch operator, and the escape operator. The 

search operator explores the search space by moving the fire 

hawks randomly. The catch operator catches the gazelles with 

the highest objective function values. The escape operator 

enables the fire hawks to escape local optima by moving them 

away from their current position. While the MFHGO 

algorithm has demonstrated promising results when tested on 

various benchmark functions, its performance may vary 

depending on the problem and parameter settings. 

In the proposed work, the resource allocation problem is 

handled by the Modified Fire Hawks Gazelle Optimization 

(MFHGO) algorithm. This algorithm is a hybridized version 

of the recently introduced metaheurisctic such as modified 

fire hawks algorithm and gazelle optimization algorithm. The 

proposed work opted these algorithms as these are highly 

efficient in terms of convergence compared to other 

algorithms. Moreover, the flexibilities provided by these 

algorithms made them most suitable for resource allocation as 

the considered scenario consists of several constraints. The 

proposed algorithm is multi- objective and it deals with the 

following major objectives: resource utilization, degree of 

imbalance, completion time, throughput, relative error and 

response time. The proposed algorithm is also iteration-based 

and for each iteration, the algorithm evaluates the entire 

population in terms of the fitness function. Based on fitness 

evaluations, the most optimal solution for resource allocation 

is identified. In the proposed algorithm, the modified fire 

hawks algorithm is considered where the opposition-based 

learning (OBL) strategy is considered to improve the 

algorithm. This strategy is mainly followed to enhance the 

overall efficiency in identifying the candidate solutions. Also, 

this strategy identifies the opposite solutions of the candidates 

and compares the fitness values of both the current and 

opposite solutions. This helps the algorithm to accurately 

identify the global optimal solution within a minimum 

number of iterations. The sequential steps followed in 

MFHGO algorithm are explained below and pseudo code is 

shown in Algorithm 2: 

Step 1: The algorithmic parameters are defined and the input 

of the algorithm is provided such as the virtual machines, 

input tasks and objective function. 

Step 2: Using the gazelle optimization algorithm, the 

initialization procedure is carried out. The problem dimension 

and problem space is defined and the matrix representation is 

followed to initialize the input values. 

Step 3: For each input candidate solution, the objective values 

are defined based on the fitness function. After evaluating the 

fitness of each solution, the best solution identified is 

considered to construct the elite matrix of the algorithm. This 

matrix is updated at the end of each iteration to keep track of 

the most optimal solutions. 

Step 3.1: The Brownian motion is defined for the algorithm 

using the step length to regulate the exploration process of the 

algorithm. 

Step 3.2: Using the levy flight strategy, the random walk of 

the search agents is defined using the levy flight distribution. 

Also, the levy stable process is defined to generate stable 

motion in the algorithm. 

Step 4: The exploratory behavior of the algorithm takes place 

when a predator is sighted in the problem space. Both the 

search agent and the predator runs at the maximum speed and 

the levy flight strategy is adopted to characterize the 

movement of the search agent. 

Step 5: The fitness functions of the solutions after the 

exploratory behavior are re-evaluated to identify the optimal 

solutions. Moreover, the exploration behavior of gazelle 

optimization algorithm prevents the solutions to get trapped in 

local optima. 

Step 6: Again the elite matrix constructed at the initial stage is 

updated with the solutions obtained from the exploration 

behavior. This helps to identify the most optimal solutions 

that are fit to be passed to the next iteration. 

Step 7: After evaluating the fitness of the population and 

sorting them accordingly, the exploitation behavior of the 

modified fire hawks algorithm is followed to identify the 
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global optimal solution. 

Step 8: In case of the fire hawks algorithm, both the fire 

hawks and the prey are considered to be candidate solutions 

and the distance value is determined between the prey and fire 

hawks initially. 

Step 9: The fire hawk territory in this algorithm is assumed to 

be a circular area and the overall distance is dependent on 

both the prey and the hawk. 

Step 10: After identifying the territory of fire hawk, the 

exploitation process is carried out for both the original and 

opposite solutions. For each solution obtained in the 

exploration process, the opposite solution is generated using 

the OBL strategy.  

Step 11: Then, the fitness functions of the original and 

opposite solutions are calculated and the most optimal 

solution is identified among the two solution sets. The update 

formulation is finally followed for the optimal solution and 

this solution is considered as the output of the resource 

allocation process. 

Step 12: Return the obtained optimal solution as the output. 

Input: 

 Number of agents N 

 Max_iter (Maximum number of iterations) 

 Objective function F (Objective Function) 

 Lb and Ub (Lower and upper bounds of variables) 

 Number of preys Prey_num 

 Number of fires Fire_num 

 Number of hawks Hawk_num 

 Fire range R 

Output: 

 The best solution x* and the corresponding function value 

F(x*) 

1. Initialize the agents' positions and velocities randomly 

within the search space. 

2. Evaluate the objective function F for each agent. 

3. Set the best agent x* as the agent with the lowest function 

value. 

4. For t = 1 to Max_iter do the following:  

4.1. Sort the agents based on their function values.  

4.2. Update the position and velocity of each agent using the 

following equations: -  

 

4.3. Clip the agents' positions to the bounds Lb and Ub.  

4.4. Evaluate the objective function F for each agent.  

4.5. Update the best agent x* if there is an agent with a 

lower function value.  

4.6. For each prey in the population, do the following:  

 4.6.1. Select a random fire and a random hawk.  

 4.6.2. If the distance between the prey and the fire is less 

than R, update the prey's position using the fire's position.  

 4.6.3. If the distance between the prey and the hawk is less 

than R, update the prey's position using the hawk's position.  

4.7. For each fire in the population, do the following:  

4.7.1. Calculate the average distance between the fire and the 

preys. 4.7.2. Update the fire's position using the following 

equation:  

 

4.8. For each hawk in the population, do the following:  

4.8.1. Select a random prey and a random fire.  

 4.8.2. If the distance between the hawk and the prey is less 

than R, update the hawk's position using the prey's position.  

 4.8.3. If the distance between the hawk and the fire is less 

than R, update the hawk's position using the fire's position.  

4.9. Update the population by replacing the worst agents with 

new ones randomly generated within the search space. 

5. Return the best agent x* and the corresponding function 

value F(x*). 

Note: r1, r2, and alpha are constants representing the 

cognitive, social, and fire step sizes, respectively. D is the 

number of dimensions in the search space. 

Algorithm 2 Sequential Steps Followed in MFHGO 

4. RESULTS AND DISCUSSION 

This section outlines the simulation methodology employed to 

assess the proposed model, which was implemented using a 

Java tool. The performance evaluation encompassed various 

metrics, including time consumption, throughput waiting 

time, response time, makespan, and resource utilization. The 

experimental setup featured five types of virtual machines, 

classified into low-performance and high-performance groups 

based on their MIPS values. Specifically, VMs 1, 2, and 3 

were classified as low performers, while VMs 4 and 5 were 

categorized as high performers. The simulation process 

utilized the GWA-T-12 Bitbrains dataset, which comprises 
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performance statistics for 1750 virtual machines within a 

Bitbrains data center. Bitbrains serves as a service provider 

that manages computing operations for businesses. The 

dataset contained performance statistics files for each virtual 

machine, organized according to traces of Rnd and fast 

storage. In the Rnd trace, 1,250 VMs were connected to a fast 

Storage Area Network (SAN) device, while in the Rnd trace, 

500 VMs were linked to either Network Attached Storage 

(NAS) or fast SAN storage systems. These performance 

statistics files contained relevant information regarding VM 

resource utilization and performance, enabling the evaluation 

of resource allocation and scheduling algorithms' 

effectiveness in cloud computing. The dataset plays a crucial 

role as a valuable asset for researchers and practitioners who 

aim to create and evaluate innovative algorithms for resource 

allocation and scheduling within cloud computing 

environments. 

4.1. Makespan 

The makespan represents the total time required for 

completing all tasks across all resources. It measures the 

difference between the starting and ending points of a task. A 

minimal makespan value indicates that the allocator employs 

effective planning strategies for resource scheduling, while a 

large makespan value suggests inefficient planning techniques 

for resource allocation.  

Figure 2 depicts the evaluation of makespan using the 

proposed methodology, comparing it to existing strategies 

such as FCFS, PSO, KPSHOW, KMPS, and MHCSGA. The 

makespan is assessed using four different task lengths of 50, 

100, 150, and 200. The proposed model surpasses other 

existing techniques by consistently reducing the makespan 

across all problem levels. 

The makespan of the suggested model over other existing 

approaches is seen in the above figure 2. The suggested model 

demonstrates a makespan of 1.45 seconds for 50 tasks, 3.6 

seconds for 100 tasks, 3.67 seconds for 150 tasks, and 5.34 

seconds for 200 jobs. Consequently, the proposed model 

outperforms previous approaches by attaining the lowest 

makespan value. 

 

 

Figure 2 Makespan vs Number of Tasks 

4.2. Virtual Machines Utilization 

Utilization of virtual machines refers to the extent to which 

the resources of a virtual machine (VM) are being used 

effectively. This includes factors such as CPU usage, memory 

usage, network usage, and storage usage. The goal of VM 

utilization is to ensure that resources are being allocated 

optimally and efficiently, so that workloads can be completed 

in a timely manner and with minimal waste. The evaluation of 

virtual machine utilization was conducted across a range of 

process numbers, spanning from 50 to 200, as illustrated in 

Figure 3-6. The proposed model's virtual machine utilization 

was compared to that of existing methods, including FCFS, 

PSO, KPSHOW, KMPS and MHCSGA.  According to the 

assumption, virtual machines with lower performance should 

handle less complex tasks, while those with higher 

performance should handle more complex ones. Hence, in the 

case of virtual machines with lower performance, the 

utilization rate of VM1 should be comparatively lower than 

that of VM2 and VM3. Similarly, when dealing with virtual 

machines exhibiting higher performance, the utilization rate 

of VM4 should be relatively lower than that of VM5. 
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Additionally, the entire makespan time should be reduced. 

The proposed MFHGO approach outperformed the existing 

methods by accurately controlling virtual machine jobs with a 

shorter makespan. 

 
Figure 3 Utilization vs VM Types at 50 Tasks 

 
Figure 4 Utilization vs VM Types at 100 Tasks 

 
Figure 5 Utilization vs VM Types at 150 Tasks 
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Figure 6 Utilization vs VM Types at 200 Tasks 

4.3. Waiting Time 

The average waiting time, which refers to the duration jobs 

spend in the queue of each assigned virtual machine (VM), is 

a crucial metric. Mathematically, this typical waiting time can 

be represented by Equation 1. 

m

Tw
Aw

t

t


                             (1) 

where tAw is the average waiting time, tTw is the waiting 

time for tasks to be executed, m is the total number of tasks, 

and is the average waiting time. Depending on how many 

requests there are, the waiting period changes. There are 100 

tasks total, with 500 being the last challenge. The proposed 

approach in the study demonstrates superior performance in 

terms of waiting time when compared to existing techniques. 

The experimental analysis conducted in the study provides 

evidence that the suggested model effectively reduces waiting 

time for job allocation on the cloud server, outperforming the 

methods currently in use. The reduction in waiting time is a 

crucial factor in improving the efficiency and responsiveness 

of cloud services. By minimizing the time jobs spend in the 

queue before being allocated to resources, the proposed model 

ensures faster processing and improved user experience. The 

experimental evaluation of the suggested model validates its 

effectiveness in reducing waiting time and highlights its 

superiority over the existing techniques. The results clearly 

demonstrate that the proposed approach offers a more 

efficient solution for job allocation in cloud computing 

environments. 

 
Figure 7 Waiting Time vs Number of Tasks 
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4.4. Response Time 

The response time, which measures the duration required to 

handle a service request, is calculated by adding the waiting 

time and service time. Figure 8 in the paper presents a 

comparative analysis of response times between the proposed 

MFHGO approach and other existing methods, including krill 

herd load balancing (LB), HPSO-MGA, IDSA, and 

MHCSGA. The results clearly indicate the superiority of the 

proposed approach, as it achieves faster response times for 

jobs of varying lengths in comparison to the existing methods. 

The simulation study provides compelling evidence 

supporting the improved performance of the proposed 

approach over the current methods. Hence, it can be 

concluded that the proposed methodology significantly 

enhances resource allocation and scheduling in cloud 

computing. 

Response time was measured for a range of task lengths from 

100 to 500. The response times obtained by the proposed 

model were 105ms for a task length of 100, 376ms for 200, 

555ms for 300, 624ms for 400, and 1014ms for 500. These 

findings clearly demonstrate that the proposed model 

surpasses existing approaches by delivering quicker response 

times. 

 

Figure 8 Response Time vs Number of Tasks 

4.5. Throughput 

Throughput is a metric that quantifies the total number of 

tasks or processes completed within a given time period. It 

measures the efficiency of a system in terms of task 

completion rate. In the context of cloud computing, 

throughput is an important factor as it directly impacts the 

overall system performance and user experience. The primary 

objective of throughput optimization is to minimize the time 

required to finish a process. This means that a higher 

throughput value indicates that the system can handle a larger 

number of tasks in a given period, resulting in faster task 

completion.  

On the other hand, a lower throughput value indicates that the 

system is slower in processing tasks, potentially leading to 

delays and longer completion times. The level of throughput 

performance achieved by a particular method is influenced by 

the number of requests or tasks being processed. Generally, as 

the number of requests increases, the throughput performance 

becomes more critical. The system needs to efficiently handle 

a larger volume of tasks to ensure timely completion. 

In Figure 9, the proposed approach for resource allocation is 

compared to existing methods such as IDSA, HPSO-MGA, 

Krill herd LB, and MHCSGA in terms of throughput 

performance. The purpose of this comparison is to evaluate 

how effectively each method can process and complete tasks 

within a specific time frame. Figure 9 presents a comparative 

analysis of the proposed approach's throughput performance 

with the existing methods. By evaluating and comparing the 

throughput values, it is possible to determine which approach 

is more effective and efficient in terms of task completion 

speed. The aim is to identify the approach that can achieve 

higher throughput, indicating better system performance in 

terms of task processing and completion. The main goal of 

throughput is to reduce the time needed to complete a process. 

The effectiveness of throughput can vary depending on the 

number of tasks involved, which can range from 100 to 500. 

The unit of measurement for throughput time is milliseconds. 

The presented illustration demonstrates that the proposed 

model surpasses existing methods by requiring less time. 

Hence, it can be inferred that the proposed model exhibits 

superior throughput performance compared to other 

approaches. 
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Figure 9 Throughput vs Number of Tasks 

4.6. Time Consumption 

Time consumption in cloud computing refers to the amount of 

time it takes to complete a task or workload in a cloud 

computing environment. This includes factors such as 

network latency, processing time, and data transfer times. The 

time consumption can vary depending on the size and 

complexity of the workload, as well as the availability and 

allocation of resources in the cloud. This can involve 

optimizing resource allocation, balancing workloads across 

multiple servers, and minimizing network latency and data 

transfer times. Effective time consumption management can 

help organizations to improve productivity, reduce costs, and 

enhance the overall performance and reliability of their cloud 

computing infrastructure. Figure 10 presents a comparison of 

the proposed MFHGO approach with other methods, 

including krill herd LB, IDSA, HPSO-MGA, and MHCSGA, 

in terms of time consumption. The simulation results show 

that the proposed approach achieves a lower rate of time 

consumption compared to the other methods. This implies 

that the proposed approach in resource allocation and 

scheduling within cloud computing is more efficient and 

requires less time compared to other methods. 

 

 

Figure 10 Time Consumption vs Number of Tasks 
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4.7. Resource Utilization 

In the paper, Figure 11 presents a comparison of resource 

utilization between the proposed model and alternative 

techniques (HMAO, GA, NSGA-II, and MHCSGA) across 

varying task sizes ranging from 4 to 16. The proposed model 

exhibits better resource utilization for each task than the 

existing methods, which suffer from low convergence rate, 

reduced stability, and poor quality, leading to increased 

optimization problem rate and make it ineffective for 

allocating resources optimally. To overcome these issues, this 

work proposes the MFHGO approach to achieve effective 

resource utilization. The proposed model attains a bandwidth 

utilization of 0.80%, 0.90%, and 0.97% for 4, 6, and 16 tasks, 

respectively, indicating better bandwidth utilization than the 

other approaches. 

 

Figure 11 Resource Utilization vs Number of Tasks 

4.8. Bandwidth Utilization 

Bandwidth utilization pertains to the amount of data that can 

be transmitted within a communication channel during a 

given period. Meanwhile, the number of tasks indicates the 

number of independent jobs or processes that require 

completion. Figure 12, which is being discussed, appears to 

demonstrate the comparison of bandwidth utilization between 

the proposed model and various existing techniques (HMAO, 

GA, NSGA-II, and MHCSGA). The proposed model 

outperforms the other methods in terms of bandwidth 

utilization for tasks ranging from 4 to 16. This improvement 

is attributed to the proposed model's utilization of the PAKM 

clustering approach to group tasks, which enhances stability 

and results in optimal bandwidth utilization. 

 
Figure 12 Bandwidth Utilization vs Number of Tasks 
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5. CONCLUSION 

The computing environment of the cloud has discovered an 

increasing number of uses in commercial and business 

environments. Within the framework of the cloud, it is 

necessary to employ a method that is both effective and 

efficient in allocating resources to satisfy users' needs and 

increase the revenue of cloud service providers. Energy 

Efficiency Resource allocation, and SLA resource allocation, 

some strategies for allocating resources are discussed; 

however, these strategies lack certain aspects. This work 

offered new taxonomies based on parameters, algorithms, and 

optimization strategies based on a comprehensive study of 

relevant approaches in the literature based on their benefits 

and limitations. This analysis was based on the results of our 

search for relevant techniques. The assessment was based on 

comparing the various approaches' merits and deficiencies, 

both in terms of their strengths and weaknesses. The 

improved strategy based on Modified Fire Hawks Gazelle 

Optimization (MFHGO) algorithm offers a practical means of 

enhancing Quality of Service (QoS) provisioning in cloud 

computing environment. To maximize resource allocation and 

enhance provisioning of QoS, the strategy makes use of the 

advantages of both modified fire hawks algorithm and gazelle 

optimization. The suggested method optimizes resource 

allocation to fulfil multiple QoS requirements while 

guaranteeing resource efficiency. These requirements include 

reaction time, availability, and throughput. The experimental 

findings show that, in terms of QoS performance measures, 

the suggested technique performs better than alternative 

approaches that are already in use. Cloud service providers 

may use the suggested method to optimize resource allocation 

and enhance QoS provisioning, resulting in higher customer 

satisfaction and better overall cloud computing environment 

performance. In this work, the improved strategy based on 

Modified Fire Hawks Gazelle Optimization (MFHGO) 

algorithm offers a practical means of enhancing Quality of 

Service (QoS) provisioning in cloud computing environment. 

To maximise resource allocation and enhance provisioning of 

QoS, the strategy makes use of the advantages of both 

modified fire hawks algorithm and gazelle optimization. The 

suggested method optimises resource allocation to fulfil 

multiple QoS requirements while guaranteeing resource 

efficiency. These requirements include reaction time, 

availability, and throughput. The experimental findings show 

that, in terms of QoS performance measures, the suggested 

technique performs better than alternative approaches that are 

already in use. Cloud service providers may use the suggested 

method to optimise resource allocation and enhance QoS 

provisioning, resulting in higher customer satisfaction and 

better overall cloud computing environment performance. The 

MFHGO algorithm offers a practical solution for enhancing 

QoS provisioning in the cloud computing environment. By 

leveraging the strengths of the modified fire hawks algorithm 

and gazelle optimization, the strategy optimizes resource 

allocation, fulfills multiple QoS requirements, and 

outperforms existing approaches. Its implementation can 

result in improved customer satisfaction and overall 

performance in the cloud computing environment. 

5.1. Future Enhancement 

This research and analysis consider different RA approaches 

in cloud computing environments. It has a significant number 

of advantages. Resource allocation has many benefits when 

changing cloud computing, independent of the size of the 

company's business markets. However, there are several 

restrictions, like reaction time, security, computation, 

reliability, and less. In addition, the review area includes the 

user rating system. Different topologies are represented in the 

network virtual machines used to connect. When 

consolidating workloads on servers, the primary focus is 

distributing identical sorts of work across all servers. The 

servers do not consider the various applications being run on 

virtual machines. If the distribution of resources is not carried 

out efficiently, then a significant number of process 

migrations will occur. Consequently, additional effort is 

required to install CPUs on the same or closely placed 

servers. The application interface might also provide end 

users with varying degrees of performance and allocate 

resources efficiently concerning energy consumption. As a 

result, service-aware resource allocation policies' quality has a 

significant place in cloud computing. The business model of 

cloud computing needs to consider the user's priorities 

regarding the availability and distribution of resources. 

Furthermore, additional research is required to investigate 

various aspects independent of the quantity of power, 

bandwidth, or prominent utilization used. Moreover, the 

experts advise conducting other research on different topics. 

Furthermore, based on the utility resource allocation, a 

collection of workloads running on VMs or PMs must 

estimate the computational and network resource 

consumption needed for performance maximization. It is 

required to meet the utility resource allocation standards. It is 

because it is critical to share these resources. SLA compliance 

involves the computation of the cost of resource consumption, 

selecting resources suitable for meeting SLA requirements, 

and evaluating the resources necessary. There is a need for 

research on allocating resources in an energy-conscious 

manner and conducting computation in an energy-efficient 

manner for the future generation of cloud computing 

infrastructure. As the cloud expands as a global infrastructure 

platform, new resource allocation mechanisms will be 

required to meet service level agreements (SLAs). Mobile 

cloud computing has swiftly become the industry standard for 

cloud-based application deployment environments in cloud 

computing. Cloud computing is a business strategy in which 

each cloud provider aims to increase revenues while 

minimizing costs (such as those connected with energy 
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consumption, temperature management, and data storage, 

among other things). Cloud clients are constantly seeking 

ways to improve the performance of their services while 

saving money and effort. 
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