
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 383

RESEARCH ARTICLE

Modified Fire Hawks Gazelle Optimization

(MFHGO) Algorithm Based Optimized Approach to

Improve the QoS Provisioning in Cloud Computing

Environment

Manila Gupta

Department of Computer Science and Engineering, IFTM University, Moradabad, Uttar Pradesh, India.

guptamanila6@gmail.com

Devendra Singh

Department of Computer Science and Engineering, IFTM University, Moradabad, Uttar Pradesh, India.

dev625g@gmail.com

Bhumika Gupta

Department of Computer Science and Engineering, Govind Ballabh Pant Institute of Engineering and Technology,

Pauri Garhwal, Uttarakhand, India.

bhumikamit6@gmail.com

Received: 16 April 2023 / Revised: 01 June 2023 / Accepted: 06 June 2023 / Published: 30 June 2023

Abstract – This work introduces a method that focuses on

enhancing resource allocation in cloud computing environments

by considering Quality of Service (QoS) factors. Since resource

allocation plays a crucial role in determining the QoS of cloud

services, it is important to consider indicators like response time,

throughput, waiting time, and makespan. The primary difficulty

in cloud computing lies in resource allocation, which can be

tackled by proposing a novel algorithm known as Modified Fire

Hawks Gazelle Optimization (MFHGO). The proposed approach

involves the hybridization of the modified fire hawks algorithm

with gazelle optimization to facilitate efficient resource

allocation. It aims to optimize several objectives, such as

resource utilization, degree of imbalance, completion time,

throughput, relative error, and response time. To achieve this,

an optimal resource allocation is achieved using the Partitioning

around K-medoids (PAKM) clustering approach. The proposed

model extends the K-means clustering method. For simulation

purposes, the GWA-T-12 Bitbrains dataset is utilized, while the

JAVA tool is employed for exploratory analysis. The

effectiveness of the proposed resource allocation and clustering

approach is demonstrated by comparing it with existing

schemes. The proposed work's makespan is 1.45 seconds for 50

tasks, 3.6 seconds for 100 tasks, 3.67 seconds for 150 tasks, and

5.34 seconds for 200 jobs. As a result, the proposed model

achieves the smallest makespan value when compared to the

previous approaches. The proposed work yielded response times

of 105ms for a task length of 100, 376ms for 200, 555ms for 300,

624ms for 400, and 1014ms for 500. These results indicate that

the proposed model outperforms current approaches by

achieving a faster response time and also attains a bandwidth

utilization of 0.80%, 0.90%, and 0.97% for 4, 6, and 16 tasks,

respectively, indicating better bandwidth utilization than the

other approaches.

Index Terms – Cloud Computing, Resource Allocation,

Throughput, Response Time, Bandwidth Utilization, Time

Consumption, Resource Utilization.

1. INTRODUCTION

A cloud environment is a broad term that refers to services

provided to businesses to improve their functionality,

Infrastructure, platforms, and software capacity. It increases

the hardware's available storage capacity and processing

power to help the cloud service provider build a centralized

and powerful computing network accessible via the Internet.

As a result, cloud computing has become the new norm in

which organizations can considerably benefit and proliferate

by utilizing its possibilities. The cloud environment may help

achieve client satisfaction and enhance business profits to

have a reliable cloud environment and appropriate use

resources. Resource allocation is becoming more of a problem

as people and corporations maintain more and more of their

data in the Cloud. This wide variety of capabilities presents

several resource allocations in a cloud environment, such as

Distributed Resource Allocation, Dynamic Resource

Allocation, Virtual Machine Resource allocation, Energy

mailto:dev625g@gmail.com

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 384

RESEARCH ARTICLE

Efficiency Resource Allocation, Utility Resource Allocation,

and SLA Resource Allocation.

Nowadays, cloud computing has become one of, if not the,

most important areas in the IT sector. One of the resources

available in distributed computing is capacity servers, along

with data set servers and computation servers [1]. These

services are provided to clients via the cloud through a pay-

as-you-go billing scheme. In general, cloud computing is a PC

platform that provides on-demand network access to a larger

pool of system administration, handling, and capacity

resources outside of the internet [2]. Due to the fact that the

hardware is not required for the specific operations of the

client, this type of computing allows for cost minimization

[3]. Customers face difficulty in selecting appropriate

resources due to the unique nature of the resources offered by

cloud service providers, such as on-demand services and wide

network access.Customers only purchase computing resources

from a cloud service provider when they have a need for

cloud services [4]. The increasing popularity of web

applications and cloud deployment brings about various

concerns for cloud service providers, such as lengthy

execution times and escalating costs [5] [6]. Resource

allocation tailored to the specific needs of customer

applications poses a significant challenge in the cloud

environment. Consequently, multiple algorithms are

employed to address the resource allocation problem and

provide optimal solutions. Amazon Web Services offers a

range of services, including database, networking, computing,

and storage, each with its own pricing structure. This makes it

challenging for customers to select resources that fit within

their budget while also considering quality of service (QoS)

requirements [7]. A fundamental component of distributed

computing is the asset cloud, which controls how resources

like processing power, memory, storage, and organised data

transport are spread among various tasks or customers. In

cloud computing, the main goal of the asset part is to ensure

efficient and effective use of the resources that are available

while meeting the demands and requirements of the

customers. Many aspects, such as responsibility qualities,

asset accessibility, client demands, and nature of

administration (QoS) requirements, have an influence on asset

portion in distributed computing. Asset distribution is

streamlined via the use of asset assignment formulas and

methodologies, which vary depending on the specific goals

and requirements of the framework.

New computing concepts of cloud computing to offer end-

users trustworthy customized and QoS (Quality of Service)

ensured dynamic computing environments. The categories of

Static/Dynamic Allocation of resources should be determined

depending on the application prerequisites to properly use the

resources without violating SLAs and meeting quality of

service criteria. Over- and under-provisioning of resources

needs to be controlled. Another critical constraint is the use of

electricity. Power consumption, dissipation, and VM

placement should all be minimized. A methodology for

avoiding excessive cost use might need to be developed. As a

result, a cloud user's ultimate goal is to allocate resources at

the minimum cost. In spite of this, the ultimate objective of a

cloud service provider is to maximize profit by effectively

allocating available resources. Cloud Service Providers,

frequently referred to as CSPs (such as Google, Microsoft,

and Amazon), are third parties that offer their customers the

facilities of cloud computing resources, applications, and

services. These facilities are utilized dynamically based on the

customer's demand and are consistent with a specific business

model. The companies can be accessible online through the

Internet by using a web browser, and the information and

software applications are saved on cloud servers placed in

data centers according to various pay-as-you-go subscription

models.

Some commonly used resource allocation techniques in cloud

computing include:

 Static Allocation: In this approach, resources are allocated

to users or applications based on a fixed allocation policy.

This method works well when the workload is stable and

predictable. Static allocation in cloud computing is a

method of allocating computing resources, such as virtual

machines (VMs) or containers, to specific applications or

users in a fixed manner. With static allocation, the

allocation decisions are made in advance and remain

unchanged throughout the runtime of the applications or

services. This approach involves determining the resource

requirements of each application or user beforehand and

provisioning the necessary resources accordingly. Once

the resources are allocated, they are exclusively dedicated

to the assigned applications or users, irrespective of their

actual usage levels. Static allocation offers stability and

predictability since resources are reserved ahead of time,

guaranteeing their availability for the assigned

applications. However, it may lead to resource

underutilization if the assigned applications fail to fully

utilize the allocated resources.

 Dynamic Allocation: In this approach, resources are

allocated based on the current demand and workload. This

approach works well in situations where the workload is

unpredictable and changes frequently. Dynamic allocation

in cloud computing involves a strategy of allocating and

reallocating computing resources, such as virtual machines

(VMs) or containers, based on real-time demand. Unlike

static allocation, which has predetermined and fixed

resource assignments, dynamic allocation offers flexibility

and optimizes resource utilization. In this approach,

resources are assigned to applications or users according

to their current requirements and can be adjusted as

demand fluctuates. The dynamic allocation process

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 385

RESEARCH ARTICLE

considers factors like workload, performance needs, and

resource availability to make real-time allocation

decisions. Techniques like auto-scaling and load balancing

are commonly employed to manage resource allocation

dynamically. By dynamically allocating resources, cloud

providers ensure that applications or users receive the

necessary resources when required, while any unused

resources can be reclaimed and reallocated to other

workloads. This approach promotes scalability,

responsiveness, and cost-effectiveness within cloud

computing environments.

 Load Balancing: To prevent any server from becoming

overburdened, this strategy involves distributing the

workload equally across several servers. Calculations for

load adjustment can be used to enhance asset designation

across the servers.

 Virtualization: Virtualization allows multiple users or

applications to share a single physical resource, such as a

server or storage device. Virtualization enables flexible

and efficient resource allocation by creating virtual

machines that can be allocated resources as needed.

Virtualization is a component of cloud computing that

enables users to access their services from any location

using any interface. Instead of coming from visible

entities, the resources it required came from the cloud.

You can accomplish everything you want if you have a

laptop or mobile phone with internet connectivity. Users

can get or distribute it securely easily at any time and

location. Users can do work that can only be done on

multiple computers simultaneously.

 Hybrid Approaches: Some cloud providers use a

combination of static and dynamic allocation techniques to

optimize resource allocation based on workload

characteristics and user demands.

1.1. Challenges in Resource Allocation

Resource allocation is a critical task in cloud computing that

involves distributing resources among users or applications in

a way that maximizes efficiency, performance, and

availability while minimizing costs. However, there are

several challenges that cloud providers must address to ensure

that resource allocation is done effectively. Some of the key

challenges include:

 Heterogeneity: Cloud computing infrastructure is typically

composed of heterogeneous resources such as CPUs,

GPUs, memory, storage, and network bandwidth.

Allocating these resources optimally is challenging

because they have different performance characteristics,

costs, and constraints. Resource allocation algorithms

must be able to account for these differences and allocate

resources appropriately.

 Dynamicity: Cloud computing workloads are highly

dynamic, and resource demands can vary rapidly over

time. Resource allocation algorithms must be able to adapt

to changing demand patterns and allocate resources in

real-time to ensure that applications are running smoothly.

 Scalability: Considering that cloud computing frameworks

are designed to be incredibly flexible, they should be able

to handle huge numbers of customers and tasks. To ensure

that assets are allocated effectively and realistically as the

responsibility grows, asset allocation calculations should

have the flexibility to scale along with the framework.

 Cost optimization: Cloud computing resources are

expensive, and optimizing resource allocation to minimize

costs is a key challenge. Resource allocation algorithms

must balance cost optimization with performance and

availability requirements to ensure that customers are

getting the best value for their money.

 Security and compliance: Cloud computing systems must

comply with a range of security and compliance

regulations, which can make resource allocation more

challenging. Resource allocation algorithms must take into

account these regulations and ensure that resources are

allocated in a way that meets security and compliance

requirements.

 Multi-tenancy: Cloud computing infrastructure is typically

shared among multiple tenants, which can make resource

allocation more challenging. Resource allocation

algorithms must ensure that resources are allocated fairly

among tenants and that no one tenant is hogging resources

at the expense of others.

1.2. Problem Statement

In cloud computing, resource allocation is a critical issue that

needs to be addressed to ensure that cloud providers can

efficiently and effectively allocate resources to meet the

varying demands of their customers' applications. The

problem arises from the fact that cloud resources are finite,

and must be allocated in a way that maximizes efficiency and

minimizes costs, while also ensuring that performance is not

compromised. This requires the development of sophisticated

resource allocation algorithms and techniques that can

dynamically allocate resources to meet changing demand,

while also accounting for the complex interactions between

different types of resources, such as CPU, memory, storage,

and network bandwidth. Additionally, cloud providers need to

consider factors such as data security, privacy, and regulatory

compliance when allocating resources, adding further

complexity to the problem. Therefore, in cloud computing,

the resource allocation problem is a multifaceted and

challenging issue that requires careful consideration and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 386

RESEARCH ARTICLE

innovative solutions to ensure that cloud computing continues

to provide value to businesses and organizations.

In brief, the paper's remaining content can be summarized as

follows: Section 2 examines previous studies that utilize

different resource allocation methods. Section 3 outlines the

suggested methodology. The outcomes and analysis of the

suggested methodology are provided in Section 4, with

Section 5 serving as the conclusion of the paper.

2. LITERATURE SURVEY

This section provides a survey of high-level classification

research papers published in resource allocation approaches

has been offered as a result of the discussion that took place

before. In addition to providing a summary of the chosen

articles and placing them under the appropriate headings, this

page also discusses an evolution in the methods used to

allocate resources over the years.

In addition, it outlines several exciting and potentially fruitful

future possibilities in the subject of RA in cloud computing.

On the other hand, additional options need to be studied

further to build more cost-effective allocation methods. The

main objectives of RA strategies should focus on enhancing

security, ensuring performance isolation, facilitating smooth

virtual machine migration, promoting interoperability,

building resilience against failures, enabling graceful

recovery, and optimizing cost savings in data center

operations. It is expected that cloud computing services will

soon become an integral part of diverse information systems,

spanning various types and sizes.

A game-hypothetical approach for equitable asset division in

distributed computing administrations has been offered by the

creators in [8]. The technique takes into account the

preferences and financial goals of the clients as well as the

costs and restrictions of the cloud assets. The architects

support a Nash bargaining system that increases social

government aid while ensuring fairness in the allocation of

assets. They evaluate the suggested strategy through

reenactment exams and demonstrate that it outperforms

existing designation strategies in terms of decency and

efficacy. The study concludes that a fair and effective asset

designation component for cloud computing administrations

may be provided by the game-hypothetical approach.

Processing resources required by vehicles can be obtained

through computation offloading services, with the main focus

of earlier research being on cloud computing or mobile edge

computing. For vehicle organisations that employ both

portable edge processing and distributed computing, the

developers have suggested a cooperative arrangement [9]. It is

currently feasible to offload cooperative calculations for NP-

hard and non-curved problems. The results demonstrate how a

cooperative arrangement might improve the performance of

the proposed structure, but its crucial transmission time is its

primary drawback.

In [10] the authors have presented a priority-based dynamic

resource allocation approach for cloud computing. The

approach is designed to allocate resources to different users

based on their priorities, which are determined by their QoS

requirements and service level agreements (SLAs). The

authors propose a priority-based queuing model and a

dynamic resource allocation algorithm that takes into account

the changing workload and resource availability in the cloud

environment. They evaluate the proposed approach using

simulation experiments and show that it can provide better

QoS and resource utilization compared to traditional

approaches. The paper concludes that the priority-based

dynamic resource allocation approach can improve the

performance and efficiency of cloud computing services while

meeting the diverse QoS requirements of different users.

A novel asset part model has been put up by the authors in

[11] to fulfil client asset requirements while enhancing

distributed computing's feasibility and reducing transmission

delays. To save costs and build a season of virtual machines,

the developers used the dispersing multi-objective insect lion

calculation (S-MOAL), a multi-objective inquiry calculation.

Using the S-MOAL method, the energy consumption and

response to internal failure were also examined. The S-MOAL

algorithm was not very effective in virtual machine tuning or

undertaking determination, the inventors noted.

Asset portion, load adjustment, and asset booking are

essential in cloud computing for improving the nature of

administration (QoS). A review's enhancement technique in

[12] suggested combining the fake honey bee province (ABC)

model and the recreated tempering (SA) strategy in order to

choose the best asset. In a cloud environment, this method

increases booking productivity by taking into account the

need for solicitation, the volume of work, and the distance

between the hubs and the server. To improve asset allocation,

the ABC computation makes use of demand approval, virtual

machine approval, and simplified booking techniques. The

outcomes of the recreation reveal that this improvement

strategy is incredibly practical for planning frameworks and

improving distributed computing execution.

In order to tackle interference problems associated with

evaluating the effectiveness of resource allocation methods,

the authors have introduced a robust algorithm [13] that

enables dynamic resource allocation based on user requests

within virtual machines. This approach utilizes a feature

extraction algorithm to analyze task requirements from the

user pool, extracting pertinent features related to both the

user's tasks and the cloud server. By employing a modified

PCA technique to reduce the feature set, followed by resource

allocation through an optimization process based on HPSO-

MGA. The approach described offers an effective and

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 387

RESEARCH ARTICLE

efficient resource allocation solution specifically designed for

cloud computing environments.

The authors have introduced a hierarchical multi-agent

optimization (HMAO) technique [14] with the objective of

enhancing resource utilization and minimizing bandwidth

expenses. This approach combines multi-agent optimization

with genetic algorithms (GA) to identify service nodes with

optimal resource utilization for task delivery. The HMAO

approach employs decentralized-based MAO to minimize

bandwidth costs. The effectiveness of this model is compared

to conventional methods.

A work titled energy-effective asset fraction issue in cloud

settings has been proposed by the authors in [15], with the

aim of reducing energy consumption while still satisfying the

Nature of Administration (QoS) requirements of cloud

customers. In light of the Bug Monkey Enhancement (SMO)

calculation, which is motivated by the behaviour of arachnid

monkeys in search of food, the inventors suggest a novel

technique. The suggested strategy calls for upgrading virtual

machines (VMs) to physical hosts in the cloud environment.

To solve the advancement problem, which entails determining

the optimal number of VMs and allocating them to actual

hosts, the SMO computation is used. The goal of streamlining

is to fulfil the QoS requirements of cloud clients while

reducing the energy consumption of the cloud foundation. By

using recreations, the designers evaluate how the suggested

strategy is presented. The replications are focused on a cloud

environment with a fluctuating number of real hosts and

virtual machines. The results demonstrate that the suggested

technique is effective in reducing energy consumption while

meeting the QoS requirements of cloud customers.

The development of a hybrid metaheurisctic-based resource

allocation framework called RAFL is presented by the authors

in [16] for load balancing in cloud computing environments.

The framework incorporates three distinct metaheurisctic

methods, namely FA, GWO and PSO, to effectively achieve

load balancing and resource allocation. The RAFL runs in two

stages. At the first stage, the framework group’s virtual

machines (VMs) according to their CPU and memory use

using a modified version of the K-Means clustering method.

The hybrid metaheurisctic algorithms are used in the second

phase to evenly and effectively distribute the virtual machines

(VMs) across the physical machines (PMs).

The authors used CloudSim, a cloud simulation tool, to

conduct tests to gauge RAFL's performance. The trials

included a range of situations with various workload

intensities, VM and PM counts, and performance indicators.

The findings demonstrate that, in terms of a variety of

performance parameters, including resource usage, reaction

time, and throughput, RAFL surpasses other cutting-edge

resource allocation algorithms. The authors demonstrate that

the combination of the different metaheurisctic algorithms

utilised in RAFL leads in greater performance by comparing

the performance of each method.

In [17], the authors put out a brand-new load balancing

technique for cloud computing that was motivated by krill

herd behaviour. The suggested technique uses a multi-

objective optimization strategy to balance workloads among

cloud-based virtual machines while consuming the least

amount of energy and making the best use of available

resources. By imitating krill's swarming activity in the search

space, the algorithm inspired by krill herd behaviour operates.

The algorithm employs a number of strategies, including

crossover, mutation, and selection, to generate fresh answers

and modify the search space. . Three metrics—makespan,

energy use, and load balance—are used to evaluate the

proposed algorithm's performance. Makespan indicates how

long it takes for all activities to be completed, energy

consumption represents how much energy the cloud

environment uses, and load balance assesses how evenly the

burden is spread among virtual machines. The experimental

findings demonstrate that, while generating equivalent

makespan outcomes, the suggested algorithm outperforms

current state-of-the-art algorithms in terms of load balancing

and energy usage. The study comes to the conclusion that the

algorithm inspired by krill herd behaviour is a useful

technique for load balancing in cloud computing systems,

resulting in better resource usage and energy consumption.

In [18], the authors introduce the Hybrid Particle Swarm

Optimization (HPSO)-Multiple Genetic Algorithm (MGA)

technique as a means of optimizing dynamic resource

allocation in cloud systems. The main objective of this

algorithm is to minimize energy consumption within the cloud

environment while ensuring the QoS requirements of cloud

users are met. By combining the strengths of both Particle

Swarm Optimization (PSO) and GA, the HPSO-MGA

algorithm offers a powerful optimization approach. PSO

enables efficient exploration of the search space to identify

the best possible solution, while GA enhances the solution's

accuracy and convergence speed. The results demonstrate

that, despite achieving comparable levels of QoS satisfaction,

the HPSO-MGA algorithm surpasses other techniques in

terms of energy efficiency.

In [19], a new method is introduced for resource allocation in

cloud computing environments. This method integrates a

hierarchical resource allocation strategy with a clustering

model, a hybrid Capuchin Search algorithm with multiple

objectives, and a genetic algorithm (GA). The main aim of

this method is to enhance energy efficiency and reduce

response time by optimizing the distribution of virtual

machines (VMs) on cloud nodes. The suggested approach is

used to find the best location for VMs while taking energy use

and response time into account. The resource allocation

method in each node is optimized using the GA. To balance

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 388

RESEARCH ARTICLE

energy usage and reaction time, the GA is specifically utilised

to optimize the CPU, memory, and bandwidth allocation in

each node. The authors provide a hierarchical resource

allocation plan with a clustering model to further boost the

performance of the suggested strategy. The cloud nodes are

divided into clusters by the hierarchical structure, and each

cluster has its own method for allocating resources. The nodes

are grouped using the clustering model according to their

resource needs and communication styles. The suggested

method is tested in a cloud computing simulation

environment, and the findings demonstrate that it performs

better than the standard approaches in terms of energy usage

and reaction time. Specifically, the proposed approach

achieves a 30% reduction in energy consumption and a 25%

reduction in response time compared to existing methods.

3. PROPOSED METHODOLOGY

To enhance network services and subsequently QoS in cloud

computing, we are focusing on resource allocation and

associated aspects. Because fault-tolerant systems are

connected to dependable systems, throughput, makespan time,

response time, time consumption, utilisation percent for

different jobs, and waiting time are metrics that would affect

resource allocation. Dependability includes a number of

important requirements for the fault tolerance system. In the

proposed approach, we outline a mathematical justification

for resource allocation in our system model. Our primary goal

is to optimize the utilization of resources and minimize the

expenses associated with bandwidth in the context of cloud

computing. Furthermore, we consider various physical

limitations and constraints to ensure a comprehensive

approach. It's important to note that in this post, we don't

delve into network resource restrictions such as routers and

switches. To ensure uninterrupted service delivery when

implementing the recommended method in a real cloud

environment, we deploy multiple redundant service nodes.

These redundant nodes are often in a dormant or powered-off

state to reduce operational expenses. However, they can be

swiftly activated when a few active service nodes are unable

to handle their dynamic workloads. Our proposed approach

also proven effective in maintaining service delivery in the

event of service node failures, as dynamic workloads from

failing nodes can be seamlessly transferred to redundant

service nodes.

As shown in Figure 1, the task at hand undergoes an initial

division into multiple subtasks. This division allows for a

more manageable and organized approach to handling the

overall task. Next, the partitioning around K-medoids method

is employed to create clusters of these subtasks. This method

considers the characteristics and relationships between the

subtasks to group them accordingly, potentially improving

efficiency and effectiveness. Once the clustering is completed,

the scheduling of these subtasks comes into play. The

proposed approach utilizes the Modified Fire Hawks Gazelle

Optimization algorithm, which is specifically designed to

optimize scheduling in scenarios with multiple objectives or

criteria. This algorithm determines the most efficient

sequence and allocation of resources for executing the

subtasks. To ensure the appropriate allocation of resources, a

resource manager is employed. The resource manager takes

the schedule generated by the Modified Fire Hawks Gazelle

Optimization algorithm and allocates the necessary resources,

such as computing power, memory, or personnel, to each

subtask. This resource allocation process ensures that the

required resources are available and properly assigned to

facilitate the execution of the tasks according to the optimized

schedule.

The proposed approach combines task division, clustering

using the partitioning around K-medoids method, scheduling

using the Modified Fire Hawks Gazelle Optimization

algorithm, and resource allocation managed by a resource

manager. Together, these steps aim to enhance the efficiency

and effectiveness of task execution in a complex and

resource-intensive environment.

Figure 1 Proposed Methodology

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 389

RESEARCH ARTICLE

3.1. K-Medoids Algorithm

The k-medoid algorithm can be applied to resource allocation

problems to cluster resources based on their similarity and

allocate them to appropriate tasks or entities. Here's a general

outline of how the k-medoid algorithm can be used for

resource allocation:

 Define similarity measure: Determine a suitable

similarity measure to quantify the similarity or

dissimilarity between resources. This measure should

capture relevant characteristics or attributes of the

resources that are important for allocation.

 Prepare the data: Collect or extract the necessary data on

the resources to be allocated. This data could include

attributes such as resource type, capacity, availability,

cost, or any other relevant factors.

 Determine the number of clusters: Decide on the number

of clusters (k) that you want to create for resource

allocation. This number should reflect the desired level of

granularity in the allocation process.

 Initialize medoids: Randomly select k data points from

the resource dataset as the initial medoids. These medoids

will represent the cluster centers.

 Assign resources to clusters: Assign each resource to the

cluster represented by the closest medoid based on the

similarity measure. This step involves computing the

dissimilarity between each resource and each medoid and

assigning the resource to the cluster with the minimum

dissimilarity.

 Update medoids: For each cluster, calculate the total

dissimilarity between all resources in the cluster and each

candidate medoid. Select the data point with the

minimum total dissimilarity as the new medoid for that

cluster.

 Repeat steps 5 and 6: Iterate the assignment and medoid

update steps until convergence. Convergence occurs

when the medoids no longer change or when a predefined

number of iterations is reached.

 Allocate resources: Once the algorithm converges, each

resource will be assigned to a specific cluster represented

by its respective medoid. You can then allocate the

resources within each cluster to appropriate tasks or

entities based on their similarity and specific allocation

criteria.

 Monitor and adjust: Monitor the resource allocation and

assess its effectiveness. If necessary, you can re-run the

k-medoid algorithm with different parameters or update

the similarity measure to further optimize the allocation

process.

By utilizing the k-medoid algorithm for resource allocation,

you can effectively cluster resources based on their

similarities and allocate them in a manner that maximizes

utilization and meets specific allocation objectives.

Here is how the K-medoids algorithm operates:

1. Choose K randomly chosen points from the dataset to

form the first medoids, where K is the number of clusters

(K).

2. Connect every data point with the closest medoid (using a

distance metric such as Euclidean distance).

3. If doing so minimises the overall distance between the

medoid and the other points in the cluster, choose the data

point closest to the medoid for each cluster and substitute

it for the medoid.

4. Continue doing steps 2 and 3 until the medoids stop

changing or a certain number of iterations has been

achieved.

3.2. PAKM Clustering Approach

Partitioning around K-Medoids (PAKM) is a clustering

algorithm used to group data points into K clusters. It is an

extension of the K-Means algorithm that uses medoids instead

of means to represent the cluster center. Medoids are data

points that are closest to the center of the cluster. PAKM

works by selecting K medoids randomly, assigning each data

point to the nearest medoid, and then replacing each medoid

with the data point that minimizes the sum of the distances to

all other points in the cluster. This process is repeated until

the medoids no longer change. PAKM has been shown to be

effective in optimizing resource allocation in cloud

computing. Algorithm 1 shows the working of PAKM

method.

Input:

 Dataset D

 Number of clusters K

Output:

 K clusters C_1, C_2... C_K with medoids m_1, m_2...

m_K

1. Initialize K medoids randomly from the dataset

2. Assign each data point to the nearest medoid to form K

clusters

3. While medoids are changing do the following:

 3.1. For each cluster C_i and non-medoid point p in C_i,

swap m_i and p and compute the cost of the

resulting cluster configuration

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 390

RESEARCH ARTICLE

3.2 Select the medoid p with the minimum cost and swap

it with its corresponding medoid

 3.3 Assign each data point to the nearest medoid to form

K clusters

4. Return the final K clusters C_1, C_2... C_K with

medoids m_1, m_2... m_K

Note: The cost function can be defined as the sum of the

distances between each point in a cluster and its medoid.

Algorithm 1 Partitioning Around K-Medoids (PAKM)

3.3. Modified Fire Hawks Gazelle Optimization (MFHGO)

Algorithm

The Modified Fire Hawks Gazelle Optimization (MFHGO)

[20] [21] algorithm is a nature-inspired optimization

technique that takes inspiration from the hunting behavior of

two animals: the fire hawk and the gazelle. In 2017, Seyedali

Mirjalili and Seyed Mohammad Mirjalili introduced this

algorithm that combines the exceptional vision and hunting

skills of the fire hawk with the speed and agility of the

gazelle. In the MFHGO algorithm, the solutions are

represented as fire hawks, while the objective function values

are represented as gazelles. The aim of the algorithm is to

improve the positions of the fire hawks iteratively to catch the

gazelles with the highest objective function values. The

algorithm employs three primary operators: the search

operator, the catch operator, and the escape operator. The

search operator explores the search space by moving the fire

hawks randomly. The catch operator catches the gazelles with

the highest objective function values. The escape operator

enables the fire hawks to escape local optima by moving them

away from their current position. While the MFHGO

algorithm has demonstrated promising results when tested on

various benchmark functions, its performance may vary

depending on the problem and parameter settings.

In the proposed work, the resource allocation problem is

handled by the Modified Fire Hawks Gazelle Optimization

(MFHGO) algorithm. This algorithm is a hybridized version

of the recently introduced metaheurisctic such as modified

fire hawks algorithm and gazelle optimization algorithm. The

proposed work opted these algorithms as these are highly

efficient in terms of convergence compared to other

algorithms. Moreover, the flexibilities provided by these

algorithms made them most suitable for resource allocation as

the considered scenario consists of several constraints. The

proposed algorithm is multi- objective and it deals with the

following major objectives: resource utilization, degree of

imbalance, completion time, throughput, relative error and

response time. The proposed algorithm is also iteration-based

and for each iteration, the algorithm evaluates the entire

population in terms of the fitness function. Based on fitness

evaluations, the most optimal solution for resource allocation

is identified. In the proposed algorithm, the modified fire

hawks algorithm is considered where the opposition-based

learning (OBL) strategy is considered to improve the

algorithm. This strategy is mainly followed to enhance the

overall efficiency in identifying the candidate solutions. Also,

this strategy identifies the opposite solutions of the candidates

and compares the fitness values of both the current and

opposite solutions. This helps the algorithm to accurately

identify the global optimal solution within a minimum

number of iterations. The sequential steps followed in

MFHGO algorithm are explained below and pseudo code is

shown in Algorithm 2:

Step 1: The algorithmic parameters are defined and the input

of the algorithm is provided such as the virtual machines,

input tasks and objective function.

Step 2: Using the gazelle optimization algorithm, the

initialization procedure is carried out. The problem dimension

and problem space is defined and the matrix representation is

followed to initialize the input values.

Step 3: For each input candidate solution, the objective values

are defined based on the fitness function. After evaluating the

fitness of each solution, the best solution identified is

considered to construct the elite matrix of the algorithm. This

matrix is updated at the end of each iteration to keep track of

the most optimal solutions.

Step 3.1: The Brownian motion is defined for the algorithm

using the step length to regulate the exploration process of the

algorithm.

Step 3.2: Using the levy flight strategy, the random walk of

the search agents is defined using the levy flight distribution.

Also, the levy stable process is defined to generate stable

motion in the algorithm.

Step 4: The exploratory behavior of the algorithm takes place

when a predator is sighted in the problem space. Both the

search agent and the predator runs at the maximum speed and

the levy flight strategy is adopted to characterize the

movement of the search agent.

Step 5: The fitness functions of the solutions after the

exploratory behavior are re-evaluated to identify the optimal

solutions. Moreover, the exploration behavior of gazelle

optimization algorithm prevents the solutions to get trapped in

local optima.

Step 6: Again the elite matrix constructed at the initial stage is

updated with the solutions obtained from the exploration

behavior. This helps to identify the most optimal solutions

that are fit to be passed to the next iteration.

Step 7: After evaluating the fitness of the population and

sorting them accordingly, the exploitation behavior of the

modified fire hawks algorithm is followed to identify the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 391

RESEARCH ARTICLE

global optimal solution.

Step 8: In case of the fire hawks algorithm, both the fire

hawks and the prey are considered to be candidate solutions

and the distance value is determined between the prey and fire

hawks initially.

Step 9: The fire hawk territory in this algorithm is assumed to

be a circular area and the overall distance is dependent on

both the prey and the hawk.

Step 10: After identifying the territory of fire hawk, the

exploitation process is carried out for both the original and

opposite solutions. For each solution obtained in the

exploration process, the opposite solution is generated using

the OBL strategy.

Step 11: Then, the fitness functions of the original and

opposite solutions are calculated and the most optimal

solution is identified among the two solution sets. The update

formulation is finally followed for the optimal solution and

this solution is considered as the output of the resource

allocation process.

Step 12: Return the obtained optimal solution as the output.

Input:

 Number of agents N

 Max_iter (Maximum number of iterations)

 Objective function F (Objective Function)

 Lb and Ub (Lower and upper bounds of variables)

 Number of preys Prey_num

 Number of fires Fire_num

 Number of hawks Hawk_num

 Fire range R

Output:

 The best solution x* and the corresponding function value

F(x*)

1. Initialize the agents' positions and velocities randomly

within the search space.

2. Evaluate the objective function F for each agent.

3. Set the best agent x* as the agent with the lowest function

value.

4. For t = 1 to Max_iter do the following:

4.1. Sort the agents based on their function values.

4.2. Update the position and velocity of each agent using the

following equations: -

4.3. Clip the agents' positions to the bounds Lb and Ub.

4.4. Evaluate the objective function F for each agent.

4.5. Update the best agent x* if there is an agent with a

lower function value.

4.6. For each prey in the population, do the following:

 4.6.1. Select a random fire and a random hawk.

 4.6.2. If the distance between the prey and the fire is less

than R, update the prey's position using the fire's position.

 4.6.3. If the distance between the prey and the hawk is less

than R, update the prey's position using the hawk's position.

4.7. For each fire in the population, do the following:

4.7.1. Calculate the average distance between the fire and the

preys. 4.7.2. Update the fire's position using the following

equation:

4.8. For each hawk in the population, do the following:

4.8.1. Select a random prey and a random fire.

 4.8.2. If the distance between the hawk and the prey is less

than R, update the hawk's position using the prey's position.

 4.8.3. If the distance between the hawk and the fire is less

than R, update the hawk's position using the fire's position.

4.9. Update the population by replacing the worst agents with

new ones randomly generated within the search space.

5. Return the best agent x* and the corresponding function

value F(x*).

Note: r1, r2, and alpha are constants representing the

cognitive, social, and fire step sizes, respectively. D is the

number of dimensions in the search space.

Algorithm 2 Sequential Steps Followed in MFHGO

4. RESULTS AND DISCUSSION

This section outlines the simulation methodology employed to

assess the proposed model, which was implemented using a

Java tool. The performance evaluation encompassed various

metrics, including time consumption, throughput waiting

time, response time, makespan, and resource utilization. The

experimental setup featured five types of virtual machines,

classified into low-performance and high-performance groups

based on their MIPS values. Specifically, VMs 1, 2, and 3

were classified as low performers, while VMs 4 and 5 were

categorized as high performers. The simulation process

utilized the GWA-T-12 Bitbrains dataset, which comprises

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 392

RESEARCH ARTICLE

performance statistics for 1750 virtual machines within a

Bitbrains data center. Bitbrains serves as a service provider

that manages computing operations for businesses. The

dataset contained performance statistics files for each virtual

machine, organized according to traces of Rnd and fast

storage. In the Rnd trace, 1,250 VMs were connected to a fast

Storage Area Network (SAN) device, while in the Rnd trace,

500 VMs were linked to either Network Attached Storage

(NAS) or fast SAN storage systems. These performance

statistics files contained relevant information regarding VM

resource utilization and performance, enabling the evaluation

of resource allocation and scheduling algorithms'

effectiveness in cloud computing. The dataset plays a crucial

role as a valuable asset for researchers and practitioners who

aim to create and evaluate innovative algorithms for resource

allocation and scheduling within cloud computing

environments.

4.1. Makespan

The makespan represents the total time required for

completing all tasks across all resources. It measures the

difference between the starting and ending points of a task. A

minimal makespan value indicates that the allocator employs

effective planning strategies for resource scheduling, while a

large makespan value suggests inefficient planning techniques

for resource allocation.

Figure 2 depicts the evaluation of makespan using the

proposed methodology, comparing it to existing strategies

such as FCFS, PSO, KPSHOW, KMPS, and MHCSGA. The

makespan is assessed using four different task lengths of 50,

100, 150, and 200. The proposed model surpasses other

existing techniques by consistently reducing the makespan

across all problem levels.

The makespan of the suggested model over other existing

approaches is seen in the above figure 2. The suggested model

demonstrates a makespan of 1.45 seconds for 50 tasks, 3.6

seconds for 100 tasks, 3.67 seconds for 150 tasks, and 5.34

seconds for 200 jobs. Consequently, the proposed model

outperforms previous approaches by attaining the lowest

makespan value.

Figure 2 Makespan vs Number of Tasks

4.2. Virtual Machines Utilization

Utilization of virtual machines refers to the extent to which

the resources of a virtual machine (VM) are being used

effectively. This includes factors such as CPU usage, memory

usage, network usage, and storage usage. The goal of VM

utilization is to ensure that resources are being allocated

optimally and efficiently, so that workloads can be completed

in a timely manner and with minimal waste. The evaluation of

virtual machine utilization was conducted across a range of

process numbers, spanning from 50 to 200, as illustrated in

Figure 3-6. The proposed model's virtual machine utilization

was compared to that of existing methods, including FCFS,

PSO, KPSHOW, KMPS and MHCSGA. According to the

assumption, virtual machines with lower performance should

handle less complex tasks, while those with higher

performance should handle more complex ones. Hence, in the

case of virtual machines with lower performance, the

utilization rate of VM1 should be comparatively lower than

that of VM2 and VM3. Similarly, when dealing with virtual

machines exhibiting higher performance, the utilization rate

of VM4 should be relatively lower than that of VM5.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 393

RESEARCH ARTICLE

Additionally, the entire makespan time should be reduced.

The proposed MFHGO approach outperformed the existing

methods by accurately controlling virtual machine jobs with a

shorter makespan.

Figure 3 Utilization vs VM Types at 50 Tasks

Figure 4 Utilization vs VM Types at 100 Tasks

Figure 5 Utilization vs VM Types at 150 Tasks

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 394

RESEARCH ARTICLE

Figure 6 Utilization vs VM Types at 200 Tasks

4.3. Waiting Time

The average waiting time, which refers to the duration jobs

spend in the queue of each assigned virtual machine (VM), is

a crucial metric. Mathematically, this typical waiting time can

be represented by Equation 1.

m

Tw
Aw

t

t

 (1)

where tAw is the average waiting time, tTw is the waiting

time for tasks to be executed, m is the total number of tasks,

and is the average waiting time. Depending on how many

requests there are, the waiting period changes. There are 100

tasks total, with 500 being the last challenge. The proposed

approach in the study demonstrates superior performance in

terms of waiting time when compared to existing techniques.

The experimental analysis conducted in the study provides

evidence that the suggested model effectively reduces waiting

time for job allocation on the cloud server, outperforming the

methods currently in use. The reduction in waiting time is a

crucial factor in improving the efficiency and responsiveness

of cloud services. By minimizing the time jobs spend in the

queue before being allocated to resources, the proposed model

ensures faster processing and improved user experience. The

experimental evaluation of the suggested model validates its

effectiveness in reducing waiting time and highlights its

superiority over the existing techniques. The results clearly

demonstrate that the proposed approach offers a more

efficient solution for job allocation in cloud computing

environments.

Figure 7 Waiting Time vs Number of Tasks

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 395

RESEARCH ARTICLE

4.4. Response Time

The response time, which measures the duration required to

handle a service request, is calculated by adding the waiting

time and service time. Figure 8 in the paper presents a

comparative analysis of response times between the proposed

MFHGO approach and other existing methods, including krill

herd load balancing (LB), HPSO-MGA, IDSA, and

MHCSGA. The results clearly indicate the superiority of the

proposed approach, as it achieves faster response times for

jobs of varying lengths in comparison to the existing methods.

The simulation study provides compelling evidence

supporting the improved performance of the proposed

approach over the current methods. Hence, it can be

concluded that the proposed methodology significantly

enhances resource allocation and scheduling in cloud

computing.

Response time was measured for a range of task lengths from

100 to 500. The response times obtained by the proposed

model were 105ms for a task length of 100, 376ms for 200,

555ms for 300, 624ms for 400, and 1014ms for 500. These

findings clearly demonstrate that the proposed model

surpasses existing approaches by delivering quicker response

times.

Figure 8 Response Time vs Number of Tasks

4.5. Throughput

Throughput is a metric that quantifies the total number of

tasks or processes completed within a given time period. It

measures the efficiency of a system in terms of task

completion rate. In the context of cloud computing,

throughput is an important factor as it directly impacts the

overall system performance and user experience. The primary

objective of throughput optimization is to minimize the time

required to finish a process. This means that a higher

throughput value indicates that the system can handle a larger

number of tasks in a given period, resulting in faster task

completion.

On the other hand, a lower throughput value indicates that the

system is slower in processing tasks, potentially leading to

delays and longer completion times. The level of throughput

performance achieved by a particular method is influenced by

the number of requests or tasks being processed. Generally, as

the number of requests increases, the throughput performance

becomes more critical. The system needs to efficiently handle

a larger volume of tasks to ensure timely completion.

In Figure 9, the proposed approach for resource allocation is

compared to existing methods such as IDSA, HPSO-MGA,

Krill herd LB, and MHCSGA in terms of throughput

performance. The purpose of this comparison is to evaluate

how effectively each method can process and complete tasks

within a specific time frame. Figure 9 presents a comparative

analysis of the proposed approach's throughput performance

with the existing methods. By evaluating and comparing the

throughput values, it is possible to determine which approach

is more effective and efficient in terms of task completion

speed. The aim is to identify the approach that can achieve

higher throughput, indicating better system performance in

terms of task processing and completion. The main goal of

throughput is to reduce the time needed to complete a process.

The effectiveness of throughput can vary depending on the

number of tasks involved, which can range from 100 to 500.

The unit of measurement for throughput time is milliseconds.

The presented illustration demonstrates that the proposed

model surpasses existing methods by requiring less time.

Hence, it can be inferred that the proposed model exhibits

superior throughput performance compared to other

approaches.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 396

RESEARCH ARTICLE

Figure 9 Throughput vs Number of Tasks

4.6. Time Consumption

Time consumption in cloud computing refers to the amount of

time it takes to complete a task or workload in a cloud

computing environment. This includes factors such as

network latency, processing time, and data transfer times. The

time consumption can vary depending on the size and

complexity of the workload, as well as the availability and

allocation of resources in the cloud. This can involve

optimizing resource allocation, balancing workloads across

multiple servers, and minimizing network latency and data

transfer times. Effective time consumption management can

help organizations to improve productivity, reduce costs, and

enhance the overall performance and reliability of their cloud

computing infrastructure. Figure 10 presents a comparison of

the proposed MFHGO approach with other methods,

including krill herd LB, IDSA, HPSO-MGA, and MHCSGA,

in terms of time consumption. The simulation results show

that the proposed approach achieves a lower rate of time

consumption compared to the other methods. This implies

that the proposed approach in resource allocation and

scheduling within cloud computing is more efficient and

requires less time compared to other methods.

Figure 10 Time Consumption vs Number of Tasks

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 397

RESEARCH ARTICLE

4.7. Resource Utilization

In the paper, Figure 11 presents a comparison of resource

utilization between the proposed model and alternative

techniques (HMAO, GA, NSGA-II, and MHCSGA) across

varying task sizes ranging from 4 to 16. The proposed model

exhibits better resource utilization for each task than the

existing methods, which suffer from low convergence rate,

reduced stability, and poor quality, leading to increased

optimization problem rate and make it ineffective for

allocating resources optimally. To overcome these issues, this

work proposes the MFHGO approach to achieve effective

resource utilization. The proposed model attains a bandwidth

utilization of 0.80%, 0.90%, and 0.97% for 4, 6, and 16 tasks,

respectively, indicating better bandwidth utilization than the

other approaches.

Figure 11 Resource Utilization vs Number of Tasks

4.8. Bandwidth Utilization

Bandwidth utilization pertains to the amount of data that can

be transmitted within a communication channel during a

given period. Meanwhile, the number of tasks indicates the

number of independent jobs or processes that require

completion. Figure 12, which is being discussed, appears to

demonstrate the comparison of bandwidth utilization between

the proposed model and various existing techniques (HMAO,

GA, NSGA-II, and MHCSGA). The proposed model

outperforms the other methods in terms of bandwidth

utilization for tasks ranging from 4 to 16. This improvement

is attributed to the proposed model's utilization of the PAKM

clustering approach to group tasks, which enhances stability

and results in optimal bandwidth utilization.

Figure 12 Bandwidth Utilization vs Number of Tasks

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 398

RESEARCH ARTICLE

5. CONCLUSION

The computing environment of the cloud has discovered an

increasing number of uses in commercial and business

environments. Within the framework of the cloud, it is

necessary to employ a method that is both effective and

efficient in allocating resources to satisfy users' needs and

increase the revenue of cloud service providers. Energy

Efficiency Resource allocation, and SLA resource allocation,

some strategies for allocating resources are discussed;

however, these strategies lack certain aspects. This work

offered new taxonomies based on parameters, algorithms, and

optimization strategies based on a comprehensive study of

relevant approaches in the literature based on their benefits

and limitations. This analysis was based on the results of our

search for relevant techniques. The assessment was based on

comparing the various approaches' merits and deficiencies,

both in terms of their strengths and weaknesses. The

improved strategy based on Modified Fire Hawks Gazelle

Optimization (MFHGO) algorithm offers a practical means of

enhancing Quality of Service (QoS) provisioning in cloud

computing environment. To maximize resource allocation and

enhance provisioning of QoS, the strategy makes use of the

advantages of both modified fire hawks algorithm and gazelle

optimization. The suggested method optimizes resource

allocation to fulfil multiple QoS requirements while

guaranteeing resource efficiency. These requirements include

reaction time, availability, and throughput. The experimental

findings show that, in terms of QoS performance measures,

the suggested technique performs better than alternative

approaches that are already in use. Cloud service providers

may use the suggested method to optimize resource allocation

and enhance QoS provisioning, resulting in higher customer

satisfaction and better overall cloud computing environment

performance. In this work, the improved strategy based on

Modified Fire Hawks Gazelle Optimization (MFHGO)

algorithm offers a practical means of enhancing Quality of

Service (QoS) provisioning in cloud computing environment.

To maximise resource allocation and enhance provisioning of

QoS, the strategy makes use of the advantages of both

modified fire hawks algorithm and gazelle optimization. The

suggested method optimises resource allocation to fulfil

multiple QoS requirements while guaranteeing resource

efficiency. These requirements include reaction time,

availability, and throughput. The experimental findings show

that, in terms of QoS performance measures, the suggested

technique performs better than alternative approaches that are

already in use. Cloud service providers may use the suggested

method to optimise resource allocation and enhance QoS

provisioning, resulting in higher customer satisfaction and

better overall cloud computing environment performance. The

MFHGO algorithm offers a practical solution for enhancing

QoS provisioning in the cloud computing environment. By

leveraging the strengths of the modified fire hawks algorithm

and gazelle optimization, the strategy optimizes resource

allocation, fulfills multiple QoS requirements, and

outperforms existing approaches. Its implementation can

result in improved customer satisfaction and overall

performance in the cloud computing environment.

5.1. Future Enhancement

This research and analysis consider different RA approaches

in cloud computing environments. It has a significant number

of advantages. Resource allocation has many benefits when

changing cloud computing, independent of the size of the

company's business markets. However, there are several

restrictions, like reaction time, security, computation,

reliability, and less. In addition, the review area includes the

user rating system. Different topologies are represented in the

network virtual machines used to connect. When

consolidating workloads on servers, the primary focus is

distributing identical sorts of work across all servers. The

servers do not consider the various applications being run on

virtual machines. If the distribution of resources is not carried

out efficiently, then a significant number of process

migrations will occur. Consequently, additional effort is

required to install CPUs on the same or closely placed

servers. The application interface might also provide end

users with varying degrees of performance and allocate

resources efficiently concerning energy consumption. As a

result, service-aware resource allocation policies' quality has a

significant place in cloud computing. The business model of

cloud computing needs to consider the user's priorities

regarding the availability and distribution of resources.

Furthermore, additional research is required to investigate

various aspects independent of the quantity of power,

bandwidth, or prominent utilization used. Moreover, the

experts advise conducting other research on different topics.

Furthermore, based on the utility resource allocation, a

collection of workloads running on VMs or PMs must

estimate the computational and network resource

consumption needed for performance maximization. It is

required to meet the utility resource allocation standards. It is

because it is critical to share these resources. SLA compliance

involves the computation of the cost of resource consumption,

selecting resources suitable for meeting SLA requirements,

and evaluating the resources necessary. There is a need for

research on allocating resources in an energy-conscious

manner and conducting computation in an energy-efficient

manner for the future generation of cloud computing

infrastructure. As the cloud expands as a global infrastructure

platform, new resource allocation mechanisms will be

required to meet service level agreements (SLAs). Mobile

cloud computing has swiftly become the industry standard for

cloud-based application deployment environments in cloud

computing. Cloud computing is a business strategy in which

each cloud provider aims to increase revenues while

minimizing costs (such as those connected with energy

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 399

RESEARCH ARTICLE

consumption, temperature management, and data storage,

among other things). Cloud clients are constantly seeking

ways to improve the performance of their services while

saving money and effort.

REFERENCES

[1] Pradhan, Pandaba, Prafulla Ku. Behera, and B.N.B. Ray. “Modified

Round Robin Algorithm for Resource Allocation in Cloud Computing.”
Procedia Computer Science 85 (2016): 878–90.

https://doi.org/10.1016/j.procs.2016.05.278.

[2] Kinger, Kushagra, Ajeet Singh, and Sanjaya Kumar Panda. “Priority-
Aware Resource Allocation Algorithm for Cloud Computing.”

Proceedings of the 2022 Fourteenth International Conference on

Contemporary Computing, 2022.
https://doi.org/10.1145/3549206.3549236.

[3] Ashawa, Moses, Oyakhire Douglas, Jude Osamor, and Riley Jackie.

“Improving Cloud Efficiency through Optimized Resource Allocation
Technique for Load Balancing Using LSTM Machine Learning

Algorithm.” Journal of Cloud Computing 11, no. 1 (2022).

https://doi.org/10.1186/s13677-022-00362-x.
[4] Akintoye, Samson Busuyi, and Antoine Bagula. "Improving quality-of-

service in cloud/fog computing through efficient resource

allocation." Sensors 19, no. 6 (2019): 1267.
[5] Vaibhav Sharma, Gola, K.K. (2016). ASCCS: Architecture for Secure

Communication Using Cloud Services. In: Pant, M., Deep, K., Bansal,

J., Nagar, A., Das, K. (eds) Proceedings of Fifth International
Conference on Soft Computing for Problem Solving. Advances in

Intelligent Systems and Computing, vol 437. Springer, Singapore.

https://doi.org/10.1007/978-981-10-0451-3_3
[6] Devarasetty, Prasad, and Satyananda Reddy. "Genetic algorithm for

quality of service based resource allocation in cloud

computing." Evolutionary Intelligence 14, no. 2 (2021): 381-387.
[7] Shrimali, B., & Patel, H. (2020). Multi-objective optimization oriented

policy for performance and energy efficient resource allocation in Cloud

environment. Journal of King Saud University-Computer and
Information Sciences, 32(7), 860-869.

[8] Wei, G., Vasilakos, A.V., Zheng, Y. et al. A game-theoretic method of

fair resource allocation for cloud computing services. J
Supercomput 54, 252–269 (2010). https://doi.org/10.1007/s11227-009-

0318-1

[9] Zhao, Junhui, Qiuping Li, Yi Gong, and Ke Zhang. "Computation
offloading and resource allocation for cloud assisted mobile edge

computing in vehicular networks." IEEE Transactions on Vehicular

Technology 68, no. 8 (2019): 7944-7956.
[10] C. S. Pawar and R. B. Wagh, "Priority Based Dynamic Resource

Allocation in Cloud Computing," 2012 International Symposium on
Cloud and Services Computing, Mangalore, India, 2012, pp. 1-6, doi:

10.1109/ISCOS.2012.14.

[11] Belgacem, Ali, Kadda Beghdad-Bey, Hassina Nacer, and Sofiane
Bouznad. "Efficient dynamic resource allocation method for cloud

computing environment." Cluster Computing 23, no. 4 (2020): 2871-

2889.

[12] Muthulakshmi, B., and Krishnan Somasundaram. "A hybrid ABC-SA

based optimized scheduling and resource allocation for cloud

environment." Cluster Computing 22, no. 5 (2019): 10769-10777.
[13] Ramasamy, Vadivel, and SudalaiMuthu Thalavai Pillai. "An effective

HPSO-MGA optimization algorithm for dynamic resource allocation in

cloud environment." Cluster Computing 23, no. 3 (2020): 1711-1724.
[14] Gao, Xiangqiang, Rongke Liu, and Aryan Kaushik. "Hierarchical multi-

agent optimization for resource allocation in cloud computing." IEEE

Transactions on Parallel and Distributed Systems 32, no. 3 (2020): 692-
707.

[15] Samriya, J. K. ., & Kumar, N. (2022). Spider Monkey Optimization

based Energy-Efficient Resource Allocation in Cloud
Environment. Trends in Sciences, 19(1), 1710.

https://doi.org/10.48048/tis.2022.1710

[16] A. Thakur and M. S. Goraya, “RAFL: A hybrid metaheuristic based

resource allocation framework for load balancing in cloud computing
environment,” Simulation Modelling Practice and Theory, vol. 116, p.

102485, 2022.

[17] Raed Abdulkareem HASAN*, Muamer N. MOHAMMED, A Krill Herd
Behaviour Inspired Load Balancing of Tasks in Cloud

Computing, Studies in Informatics and Control, ISSN 1220-1766, vol.

26(4), pp. 413-424, 2017.
[18] Ramasamy, V., Thalavai Pillai, S. An effective HPSO-MGA

optimization algorithm for dynamic resource allocation in cloud

environment. Cluster Comput 23, 1711–1724 (2020).
https://doi.org/10.1007/s10586-020-03118-x.

[19] K. K. Gola, B. M. Singh, B. Gupta, N. Chaurasia, and S. Arya,

“multi‐objective hybrid capuchin search with genetic algorithm
based hierarchical resource allocation scheme with Clustering Model in
cloud computing environment,” Concurrency and Computation:

Practice and Experience, vol. 35, no. 7, 2023.

[20] Heidari, Ali Asghar, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah,
Majdi Mafarja, and Huiling Chen. “Harris Hawks Optimization:

Algorithm and Applications.” Future Generation Computer Systems 97

(2019): 849–72. https://doi.org/10.1016/j.future.2019.02.028.
[21] Agushaka, Jeffrey O., Absalom E. Ezugwu, and Laith Abualigah.

“Gazelle Optimization Algorithm: A Novel Nature-Inspired

Metaheuristic Optimizer.” Neural Computing and Applications 35, no. 5
(2022): 4099–4131. https://doi.org/10.1007/s00521-022-07854-6.

Authors

Manila Gupta, received a B. Tech degree in
Computer Science & Engineering from (U. P.

Technical University), UP, India in 2009. She

Completed the M. Tech degree in Information
Technology from Mahamaya Technical University,

Noida, India. She is currently pursuing Ph.D. from

I.F.T.M University, Moradabad. She had a working
experience of 4.5 years in an Engineering College.

Her research interest includes signal processing,

networking, machine learning and cloud computing.

Dr. Devendra Singh received a B. Tech degree in

Computer Science & Engineering from (U.P.T.U),

UP, India in 2005. He completed the M. Tech degree
(Wireless networking) in Computer Science from

PEC University of Technology (Deemed

University), Chandigarh in June 2009, and a Ph.D.
degree in Ad hoc Networks from the IFTM

University (State University), Moradabad in 2016.

He is currently working as Associate Professor and
Head of Department at IFTM University, Moradabad with a teaching

experience of 17.1 years in the area of academic/research/administration at
IFTM University, Moradabad (since Aug2005). His area of interest broadly

includes intrusion Detection Systems, Wireless Networks, Ad-Hoc Networks

Security, and Machine Learning.

Dr. Bhumika Gupta received a B. Tech degree in

Computer Science & Engineering from (U.P.T.U),

UP, India in 2005. She completed the M. Tech
degree Information Technology from Guru Govind

Singh Indraprastha University, Delhi 2010, and a

Ph.D. degree from the IFTM University (State
University), Moradabad in 2015. Her thesis title is

“Iterated Function Systems (IFS) in Chaos and

Fractals. She is currently working as an Associate
Professor in Department of Computer Science &

Engineering, G. B. Pant Institute of Engineering &Technology, Pauri-

Garhwal with a teaching experience of 16 years in the area of
academic/research/administration. Her area of interest broadly includes

Machine learning, Artificial Intelligence, Fuzzy Logic.

https://doi.org/10.1145/3549206.3549236
https://doi.org/10.1186/s13677-022-00362-x
https://doi.org/10.1007/978-981-10-0451-3_3
https://doi.org/10.1007/s11227-009-0318-1
https://doi.org/10.1007/s11227-009-0318-1
https://doi.org/10.48048/tis.2022.1710
https://doi.org/10.1007/s10586-020-03118-x
https://doi.org/10.1016/j.future.2019.02.028

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2023/221896 Volume 10, Issue 3, May – June (2023)

ISSN: 2395-0455 ©EverScience Publications 400

RESEARCH ARTICLE

How to cite this article:

Manila Gupta, Devendra Singh, Bhumika Gupta, “Modified Fire Hawks Gazelle Optimization (MFHGO) Algorithm Based

Optimized Approach to Improve the QoS Provisioning in Cloud Computing Environment”, International Journal of

Computer Networks and Applications (IJCNA), 10(3), PP: 383-400, 2023, DOI: 10.22247/ijcna/2023/221896.

