# **Towards Prediction of Students Educational Accomplishments Using Data Mining**



Mini Agarwal and Bharat Bhushan Agarwal

**Abstract** Prediction outcomes help students and faculty learn new ideas for gaining the desired goals of institutes. The goal of this research is to study all the data mining techniques, algorithms, and factors that help in the prediction of the student's performance between the years 2010 and 2021. In this paper, we have reviewed and analysed more than 35 research papers based on seven aspects, i.e. (1) prediction of the student's performance outcomes related to the student grade, result, and knowledge, (2) models and software developed in performance prediction, (3) factors that helped in prediction, (4) algorithm that gave the most accurate result, (5) student posture in the classroom while taking the class, (6) subjective paper evaluation, and (7) feedback related to students and faculty.

Keywords Recognition  $\cdot$  Educational data mining  $\cdot$  Prediction  $\cdot$  Machine learning  $\cdot$  Review  $\cdot$  Outcome

## 1 Introduction

Everything becomes online, i.e. shopping, playing, examination, education, banking, and business in this pandemic era. New technologies and ways have been developed using educational data mining and machine learning for making online education interesting and powerful. Cheating prevention is very less in online examinations, many students lack knowledge related to the subject and practical, but they get the full marks, due to this students do not get a placement and faculty cannot be able to measure the right performance of the students. In this technology era, more institutes, colleges, and universities are opened and all of them have high-level competition. Predicting the performance of the students becomes more challenging for a good

M. Agarwal (🖂)

Research Scholar, IFTM University, Moradabad, India e-mail: miniagarwal21@gmail.com

B. Bhushan Agarwal Associate Professor, CSE Department, IFTM University, Moradabad, India

<sup>©</sup> The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 D. K. Sharma et al. (eds.), *Micro-Electronics and Telecommunication Engineering*, Lecture Notes in Networks and Systems 617, https://doi.org/10.1007/978-981-19-9512-5\_2

result database. The best ranking, institutes, and universities students have excellent performance because they provide the best teachers, methodology, and excellent learning system. These universities have excellent results and records of student performance. Students are big source of advertising and feedback of the institution all over the world therefore, students' satisfaction about the teaching process and course selection is very important. The country has different types of boards (like NAAC accreditation under UGC and NBA accreditation under AICTE), and they work on the quality enhancement of the institution like technical programmes, teaching methodology, laboratory equipment, placements, and years wise progress of the students. A lot of students aspire to become an engineer but only some students become successful engineers, some drop out the college in the middle of the course because they cannot bear the pressure of the various internal and external exams. Data mining techniques and machine learning play a vital role in prediction of student performance.

Data mining techniques light on important aspects from a database and expose important data that is not in limelight. Clustering in data mining analyses the data and clusters the same type of data that are similar in specific manner [1]. Academic mining discovers student understanding and chooses how teacher deliver the right lecture in changing academic standards [2].

Data mining is a procedure to draw out important data from data sets without error using machine learning algorithms or artificial intelligence. The process cycle of data mining is shown in Fig. 1. This combination of predicting the student performance and the outcome helps the faculty for improving and making interesting teaching methodology. In this paper, our objective is to review various techniques and algorithms, i.e.

- Analyse existing prediction models.
- Identify key findings of existing model.
- Analyse gaps in previous research.



Fig. 1 Data mining process cycle [3]

- To study subjective paper evaluation, student gesture in classroom.
- Analyse student and teacher feedback.

#### 2 Research Methodology

The methodology is being used for finding the gaps, study research algorithms, study and analyse factors of existing or previous research, and develop a new research in the same field with different or same algorithm and factors. Through the research methodology getting the all answers related to the research questions that are helpful in outcome.

## 2.1 Research Questions

Research questions are very important part of overall literature review. Through thus researcher develops some questions related to research and finding out the answers that are being helpful in researcher research. Various frameworks have been developed for developing research questions. We are using PICO, finer, and QA. Tables 1, 2, and 3 show the research strategies.

Many questions had been developed using above research framework, and some questions are given below:-

- How many prediction algorithms have been used?
- What are the common factors?
- What are the results of different algorithms on common factor?
- What type of degree involve in research?

| PICO factors              | Description                                                                                                              |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|
| P: Population of interest | What type of population has been used for experiment/what type of population has do research on this/student performance |
| I: Intervention           | How many and which type of factors and algorithms have been used                                                         |
| C: Comparison             | Comparison among various algorithms and factors for finding best, study of case studies                                  |
| O: Outcome                | Deeply study of past research, find out best prediction algorithms and methods                                           |

| Table 2 QA research   strategy | QA factors    | Description                            |  |
|--------------------------------|---------------|----------------------------------------|--|
| stategy                        | Q:Quality     | Quality of the past researches         |  |
|                                | A: Assessment | Assessment of various research results |  |

| Finer factors  | Description                                                                                                                          |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------|
| F: Feasibility | Tools, time, algorithms, sample size, funding, methods, researchers, study design<br>in previous research had been sufficient or not |
| I: Interesting | How research can be made interesting. Finding out the most interesting factors and algorithms                                        |
| N: Novel       | Finding the new research from the previous research                                                                                  |
| E: Ethical     | Research should be ethical. All researchers should follow the rules and regulations                                                  |
| R: Relevant    | Past research had been relevant. Do a new relevant research                                                                          |

Table 3 Finer research strategy

- How prediction algorithm outcome worked on student performance?
- Which algorithm is best for prediction?
- What are the factors and attributes used in comparison with algorithm?
- What is the quality of previous research?
- How previous research helpful for finding new one?
- What is the sample size used in previous research?

## **3** Common Factors/Attributes Used in Prediction

Attributes are the most important part of predicting performance. Some research papers had the same attributes along with additional attributes. The most common attributes that have been used are parents and family background details (like parents occupation, parents education, family size, parents salary, language, etc.) because family and parents are ideal to everyone. Family and parents are the first teacher and motivators of their children [4–9]. Next, a most used attribute is gender (female/male) because female students are serious, hardworking, self-motivated, focused, and disciplined in comparison with boy's students [4, 8–11]. Most used attributes for internal assessment are attendance, internal marks, assignment, and presentation, i.e. shows how student serious to their studies [5, 6, 8, 9, 12-15]. Grade or external assessment is also most important attribute of student performance prediction in this 10th, 12th, and external marks are included [4-10, 12, 15]. Some important attributes that help in prediction, i.e. nationality, language, Internet access, entrance result, scholarship, community, and distance and these attributes are the least important, and some researchers used in their research because, i.e. not give the valid result [4, 5, 5]8, 10, 11]. In the above some attributes, researchers predict the student performance based on student school background, some researchers use family background, and some researchers used grade, internal assessment, and external assessment based on 10th, 12th, b.tech internal and external marks, and some researchers used assignment, language, extracurricular activities in prediction. Some attributes are work on the qualitative data and some on the quantitative data.

# 4 Key Findings and Gap Analysis in Previous Research

This paper contains the various sections, and each section has different information of research done in previous years in tabular form.

| S.<br>No. | Туре                                    | Author name and published year                           | Methodology                                                                         | Key findings                                                                                                                                                        | Gap analysis                                                                                                                                                             |
|-----------|-----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Prediction of<br>student<br>performance | S. Anupam<br>Kumar & Dr.<br>Vijayalakshmi M.<br>N., 2011 | Decision tree                                                                       | Predicted the<br>MCA students'<br>final results using<br>C4.5 algorithm and<br>compare with ID3<br>algorithm                                                        | Build the<br>system for<br>predicting the<br>placement,<br>faculty<br>feedback,<br>student<br>feedback, etc.                                                             |
| 2         |                                         | Osmanbegovic E.,<br>Suljic M., 2012                      | Naïve Bayes,<br>MLP, and J48                                                        | Predicted the<br>passed and failed<br>result of students<br>in which course<br>they were involved                                                                   | Extend the<br>research with<br>more<br>attributes,<br>algorithm and<br>will finding the<br>accurate result                                                               |
| 3         |                                         | Vamanan Ramesh<br>et al., 2013                           | Naive Bayes,<br>multilayer<br>perception,<br>SMO, J48, and<br>REPTree<br>algorithms | Identified the<br>different higher<br>predictive<br>variables and<br>construct<br>algorithm for<br>grading the higher<br>secondary students                         | Modify the<br>system for<br>providing the<br>online learning<br>material and<br>also find out<br>the various<br>factors that<br>affected the<br>student's<br>performance |
| 4         |                                         | Elakia et al., 2014                                      | Decision tree<br>algorithms<br>(C4.5 and<br>CART)                                   | Classification<br>technique had been<br>used for predicting<br>carrier of high<br>school students<br>and also predicts<br>the violation<br>behaviour of<br>students | Would<br>examine<br>different types<br>of techniques<br>and attributes<br>for predicting<br>more accurate<br>result                                                      |
| 5         |                                         | A. M. Shahiria,<br>W. Husaina, N. A<br>L Rashida, 2015   | Data mining<br>algorithms                                                           | Studied the various<br>predicting<br>algorithms and find<br>out best attributes<br>that given the best<br>result in prediction                                      | Develop the<br>model that<br>predicts the<br>students'<br>performance<br>using<br>meta-analysis                                                                          |

| S.<br>No. | Туре | Author name and published year                      | Methodology                                                                                                                              | Key findings                                                                                                                                                                                                                | Gap analysis                                                                                                                                                           |
|-----------|------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6         |      | P. Thakar, A.<br>Mehta, Manisha,<br>2015            | Data mining<br>techniques                                                                                                                | Analysed various<br>types of<br>educational tools<br>and applications<br>that help in<br>performance<br>prediction                                                                                                          | Identify and<br>apply various<br>data mining<br>techniques for<br>predicting the<br>more accurate<br>result                                                            |
| 7         |      | Amjad Abu Saa,<br>2016                              | Decision tree<br>algorithms and<br>Naive Bayes<br>model                                                                                  | Constructed the<br>prediction model<br>on the base of<br>various attributes<br>that depends on the<br>personal, family,<br>and social factors                                                                               | Finding out the<br>more patterns<br>for improving<br>the students'<br>performance<br>by applying<br>the more data<br>mining<br>techniques on<br>the students<br>record |
| 8         |      | Annisa Uswatun<br>Khasanah,<br>Harwati, 2017        | Feature<br>selection<br>method,<br>Bayesian<br>network, and<br>decision tree<br>algorithm                                                | Analysed the<br>different attributes<br>that gave the<br>accurate<br>prediction. The<br>study showed that<br>first year<br>attendance and<br>GPA had the<br>important attribute<br>in accurate<br>performance<br>prediction | Using the more<br>two attributes<br>gender and<br>origin in<br>predicting the<br>students'<br>performance                                                              |
| 9         |      | Aysha Ashrafa,<br>Sajid Anwerb, M.<br>G. Khan, 2018 | Various data<br>mining<br>algorithms,<br>classifiers,<br>classification<br>algorithms, and<br>use of neural<br>network in data<br>mining | Identified the best<br>prediction method<br>and algorithm that<br>gave the accurate<br>result on the basis<br>of comparison and<br>study                                                                                    | Finding out<br>more efficient<br>techniques for<br>accuracy in<br>result                                                                                               |

| /    | . •   | 1    |
|------|-------|------|
| (cor | ntim  | ued) |
| 1001 | ILIII | ucu) |
|      |       |      |

| S.<br>No. | Туре | Author name and published year                                                        | Methodology                                                              | Key findings                                                                                                                                                                                  | Gap analysis                                                                                                                                                                                       |
|-----------|------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        |      | Atta-Ur-Rahman,<br>Kiran Sultan,<br>Nahier Aldhafferi,<br>Abdullah<br>Alqahtani, 2018 | Clustering,<br>C-mean, and<br>Apriori<br>algorithm                       | Constructed the<br>model on the basis<br>of student interest<br>and feasibility                                                                                                               | Including the<br>some attributes<br>in the research<br>like student is<br>working or not,<br>what could the<br>time table and<br>timing of<br>class? How<br>teachers will<br>evaluate the<br>marks |
| 11        | -    | S. Urkude, K.<br>Gupta, 2019                                                          | Decision tree,<br>Naïve Bayes,<br>and support<br>vector machine          | Calculate how<br>many students<br>complete their<br>graduation and<br>how much course<br>rate achieved in<br>which student<br>enrolled                                                        | Same<br>technology<br>will applied on<br>the large data<br>set and<br>develops more<br>attributes<br>related to first<br>year progress                                                             |
| 12        | -    | K. K. Lay, A.<br>Cho, 2019                                                            | Naive Bayesian<br>classifier                                             | Classification<br>model was used on<br>previous result of<br>IT students for<br>predicting division                                                                                           | Applying the<br>more<br>classification<br>algorithms and<br>add the more<br>attributes that<br>will give the<br>optimal result                                                                     |
| 13        |      | Vairachilai S,<br>Vamshidharreddy,<br>Avvari Sai Saketh,<br>Gnanajeyaraman<br>R, 2020 | Decision tree,<br>support vector<br>machine<br>(SVM), and<br>Naive Bayes | Identified the<br>different<br>dependent and<br>independent<br>factors and apply<br>the various data<br>mining algorithm<br>in which Naive<br>Bayes algorithm<br>predicted the best<br>grades | Applying and<br>analyse the<br>data set to<br>identify the<br>students'<br>performance in<br>systematic<br>manner                                                                                  |

| S.<br>No. | Туре | Author name and published year                                                                        | Methodology                                                                                                            | Key findings                                                                                                                                                                                                                                                             | Gap analysis                                                                                                                                                                                                                               |
|-----------|------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14        |      | R. Hasan, S.<br>Palaniappan, S.<br>Mahmood, A.<br>Abbas, K. U.<br>Sarker and M. U.<br>Sattar,<br>2020 | Classification<br>tree, random<br>forest, KNN,<br>SVM,<br>regression,<br>Naïve Bayes,<br>NN, and CN2<br>rule induction | Analysed various<br>e-learning<br>applications and<br>apply various<br>algorithms. Apply<br>the genetic<br>algorithm and<br>various<br>components to the<br>result to reduce the<br>features                                                                             | Develop the<br>dashboard<br>would helpful<br>for teachers to<br>predict the<br>student<br>performance<br>and find out<br>the poor<br>performers on<br>the weekly<br>basis. Students<br>could also<br>calculate their<br>own<br>performance |
| 15        |      | F. Afrin, M. S.<br>Rahaman, M.<br>Hamilton, 2020                                                      | SVM,<br>multilayer<br>perceptron,<br>decision tree,<br>random forest,<br>decision table,<br>and KNN                    | Predicted the<br>satisfaction of the<br>students in aspects<br>of course outcome,<br>professional<br>outcome, course<br>objective, and how<br>to all learning<br>things connect to<br>the real world                                                                     | Will add the<br>more aspects<br>for predicting<br>the satisfaction<br>of the students<br>like teaching<br>method,<br>teacher<br>knowledge<br>related to<br>subject, text<br>books,<br>syllabus, etc.                                       |
| 16        |      | Ahajjam Tarika,<br>Haidar Aissab, F.<br>Yousef, 2021                                                  | Regression<br>algorithm,<br>decision tree,<br>and random<br>forest algorithm                                           | Advised the<br>students to take the<br>preference of the<br>subject by<br>performance of<br>first year and<br>aptitude test and<br>how will future<br>grow with subject<br>preference after<br>bachelors and<br>predicted the<br>grades after<br>deciding the<br>subject | This model<br>made for<br>Moroccan<br>students so<br>after doing the<br>some changes<br>in the existing<br>model and will<br>work for<br>Indian students                                                                                   |

| /   | . •    | 1    |
|-----|--------|------|
| 100 | ontinu | red) |
| (u) | muni   | acu) |

| S.<br>No. | Туре     | Author name and published year                                                                 | Methodology                                                                                       | Key findings                                                                                                                                                              | Gap analysis                                                                                     |
|-----------|----------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 17        |          | J. Dhilipan, N.<br>Vijayalakshmi, S.<br>Suriya, Arockiya<br>Christopher, 2021                  | Binomial<br>logical<br>regression,<br>decision tree,<br>and entropy and<br>KNN classifier         | Students recognize<br>the final grade and<br>improve their<br>academic<br>performance                                                                                     | More attributes<br>will add to the<br>database for<br>improving the<br>accuracy of the<br>result |
| 18        | Feedback | D. Shrivastava, S.<br>Kesarwani, A. K.<br>Kadam, A.<br>Chhibber, N.<br>kumar J. kumar,<br>2017 | General<br>sentiment<br>analysis<br>algorithm,<br>multi-use<br>sentiment<br>analysis<br>algorithm | This system<br>calculates the<br>overall feedback<br>example course,<br>subject teacher<br>related and reduce<br>the time and paper<br>work                               | After modify<br>the system. It<br>will use in the<br>hotels,<br>hospitals, etc.                  |
| 19        | -        | Rajvee Patel,<br>Omkar Agrawal,<br>Yash Gangani,<br>Ashish<br>Vishwakarma,<br>2018             | HTML, CSS, j<br>Query, My<br>SQL,                                                                 | Evaluated the<br>feedback online to<br>reduce the<br>manpower and<br>paperwork                                                                                            | Adding the<br>module of<br>student<br>feedback in<br>existing system                             |
| 20        | -        | R. R. Kamble, V.<br>V. Patil, P. R.<br>Bhujange, P. M.<br>Kolawale, N. A.<br>Kamble, 2019      | HTML, CSS, j<br>Query, My<br>SQL, Ajax with<br>Xampp server,<br>php                               | Through this<br>module student<br>easily modify the<br>feedback anytime<br>and faculty see<br>his/her past<br>feedbacks easily                                            | Develop more<br>modules for<br>making<br>feedback<br>process easy                                |
| 21        |          | B. T. Agricola, F.<br>J. Prins, and D. M.<br>A. Sluijsmans,<br>2020                            | ANOVA<br>F-ratios,<br>MSLQ, FAPQ                                                                  | In this research,<br>researcher studied<br>that verbal<br>feedback is more<br>accurate than the<br>written feedback<br>because it does not<br>create<br>misunderstandings | Will trained<br>the students<br>how to fill the<br>properly<br>feedback form                     |

| S.<br>No. | Туре                               | Author name and published year                                 | Methodology                                                 | Key findings                                                                                                                                                                                                                                                                             | Gap analysis                                                                                              |
|-----------|------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 22        | Subjective<br>answer<br>evaluation | S. M. Patil, S.<br>Patil, 2017                                 | NLP                                                         | Developer identify<br>the important<br>keyword,<br>sentences in the<br>answer and gave<br>the weight<br>according to the<br>presence and then<br>compare to the<br>users answer and<br>give the score<br>according to the<br>weight                                                      | Rebuild system<br>will give the<br>report to the<br>students that<br>how their<br>answer will<br>evaluate |
| 23        |                                    | P. Patil, S. Patil, V.<br>Miniyar, A.<br>Bandal, 2018          | Nave Bayes,<br>cosine<br>similarity,<br>machine<br>learning | In this model,<br>scanned sheet of<br>answer has been<br>taking and then<br>tokenize the<br>answer in to words<br>and sentences and<br>the match to<br>already given<br>answer on the<br>basis of grammar,<br>keywords, cosine<br>similarity, etc., and<br>gave the<br>appropriate grade | Some add-ons<br>done on the<br>system that<br>will give the<br>more accurate<br>result                    |
| 24        |                                    | Sakshi Berad,<br>Pratiksha<br>Jaybhaye, Sakshi<br>Jawale, 2019 | Natural<br>language<br>processing                           | In this admin insert<br>a question and<br>related answer and<br>machine compared<br>the user answer to<br>the machine<br>answer word by<br>word and gave the<br>marks according<br>the answer                                                                                            | Develop the<br>system for<br>giving the<br>marks to new<br>words and<br>sentences                         |

(continued)

| S.<br>No. | Туре                   | Author name and published year                                     | Methodology                                                                                       | Key findings                                                                                                                                                                                                                                                                       | Gap analysis                                                                                                                |
|-----------|------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 25        |                        | R. S. Victoria D,<br>V. G. Vinitha P,<br>Sathya R, 2020            | Optical<br>character<br>recognition,<br>natural<br>language<br>processing,<br>machine<br>learning | In this model,<br>handwritten<br>answer extracted<br>by OCR and then<br>comparison done<br>by the given<br>answer that give<br>the result on basis<br>of sentence length,<br>keyword match,<br>and usage of words                                                                  | Upgrade the<br>software for<br>evaluating the<br>digits, broken<br>characters, and<br>images in the<br>subjective<br>answer |
| 26        |                        | Vineet Sanjeev<br>Khalkho, Shoyab<br>Malik. S. K, S.<br>Rama, 2021 | NLP, regular<br>expression,<br>cosine factor,<br>TF-IDF                                           | In this system,<br>developer converts<br>the question and<br>related answer in<br>to regular<br>expression and<br>then generate the<br>cosine factor and<br>then same method<br>done in user<br>answer and then<br>both results<br>measure by the<br>TF-IDF for<br>accurate result | A system in<br>which<br>electronic<br>invigilator and<br>student help<br>module will<br>construct                           |
| 27        |                        | A. Girkar, M.<br>khambayat, A.<br>Waghmare, S.<br>Chaudhary, 2021  | Natural<br>language<br>processing,<br>Naive Bayes,<br>decision tree<br>classification             | Evaluate the<br>subjective answer<br>by comparing the<br>all these like<br>keyword matching,<br>cosine similarity,<br>number of words<br>and line in answer,<br>cosine similarity,<br>etc., to the faculty<br>answer, i.e. given<br>in the starting                                | Modify the<br>system for<br>giving the<br>more accurate<br>result                                                           |
| 28        | Posture<br>recognition | J. Redmon, A.<br>Farhadi                                           | YOLOv3                                                                                            | In this user add the<br>more attributes in<br>YOLOv3 to<br>clearing the<br>computer vision<br>more clearly                                                                                                                                                                         | Doing the<br>more research<br>for clear<br>computer<br>vision                                                               |

| S.<br>No. | Туре | Author name and published year                                                          | Methodology                                         | Key findings                                                                                                                                                                                                                              | Gap analysis                                                                                                   |
|-----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 29        |      | Quang Trung,<br>Nguyen, Hoang<br>Tieu Binh, The<br>Duy, Bui, Phuong<br>Dung, N. T, 2019 | VGG16 AND<br>VGG 19,<br>adaptive<br>learning        | Through the<br>postures and<br>gestures of the<br>student, the<br>students were<br>taking interest in<br>class material and<br>methodology or<br>not. It helped the<br>teacher to give a<br>lecture more<br>attractive to the<br>learners | Developing the<br>more modules<br>of adaptive<br>training system                                               |
| 30        |      | Y. Zhang, T. Zhu,<br>H. Ning, Z. Liu,<br>2021                                           | SVM,<br>high-resolution<br>network, S&E<br>networks | Recognizing the<br>students was<br>attentive in the<br>class or not<br>through the<br>different poses. In<br>this student pose<br>was compare to the<br>already stored<br>poses of database.<br>This model<br>accuracy is 90.1%           | Rebuild the<br>recognition<br>algorithm for<br>adding new<br>poses at<br>different time<br>and<br>environments |

## 5 Algorithms Used for Student Performance Prediction

Various classification and clustering algorithms have been used in student performance prediction like KNN, SVM, neural network, machine learning, binomial regression, random forest, Naive Bayes, multilayer perceptron, and Apriori algorithm.

- The decision tree is a simple and easy algorithm for large and small database sets. Its reasoning process has very easy to use, and it can be immediately transform in decision rules (if-else). Many researchers used a decision tree algorithm for prediction and some users got the best result. The paper used a decision tree and got the best prediction [6, 7, 12, 16, 17].
- A Naive Bayes algorithm is a collection of classification algorithms in one place. It has labelled training data sets for developing the database tables. The paper used Naive Bayes and got the best prediction [5, 6, 9, 10, 14].

- Support vector machine (SVM) acquires database and characterizes the hyperplane into two classes. The paper used SVM and got the best prediction [8, 11, 18].
- Neural networks have interconnected nodes. Input nodes take the input, middle layers process the input, and the output layer produces the result. The papers got the best prediction [4, 7, 13].
- Binomial regression is similar to binary regression response that comes from either success or failure. The papers got the best prediction [15, 19].
- Random forest is also a good prediction algorithm [20] that gave the best prediction result.

## 6 Other Areas

Faculty and student feedback is more important area in 2020, and Bas T. Agricola, Frans J. Prins, and Dominique M. A. Sluijsmans studied verbal feedback is more accurate than the subjective and multiple choice feedback (30). Through subjective answer evaluation calculates the accurate performance of students. In 2021, A. Girkar et al. developed the system using natural processing language that gave the accurate marks to the students in subjective answers [21]. Posture recognition recognizes that student is attentive or not in classroom and helps in invigilation. In 2021, author Yiwen Zhang et al. recognize the student gesture in classroom and analysed student is attentive in classroom or not [22].

## 7 Summary

All researchers have researched educational data mining that is very useful in the new era. Prediction through data mining has a vast area in the computer science field. Through this research, researchers made predictions on students' performance, results, feedback, poses, grade, career, and provide satisfaction related to course selection, job selection, and business selection. Finding out various sets like the weak students, students who are comfortable/uncomfortable with class timetables, class timings, students who have completed their graduation or not. Studied different types of attributes that are helpful in prediction like status, father occupation, previous results, attendance, interest in the subject, related family member's education, and other information. Through posture recognition, whether a student is interested in a lecture or not and feedback is a more important part for teachers that help in teacher self-improvement in various fields. In overall review process, Naive Bayes and decision tree gave the best result.

## 8 Future Scope

In education, everything relates to another thing like the result is dependent on the acquisitive power of student, interest area depends on how the subject and expertise on it that only come when the student learns the subjects taking the interest, placement depends on the result, good feedback depends on the teaching methodology, course objective, and the result and last but not the least, college ranking depends on the student result, placement, and the feedback. Now the challenge is improve and calculate the performance of college on the basis of improve the performance of weak students, to prepare the students for interview, aware the parents about placement, feedback, compute the college performance, and complete data analysis. Everyone related to institute will do the progress (management, student, teacher, attendants, and parents).

## References

- Govindasamy, K., & Velmurugan, T. (2018). Analysis of student academic performance using clustering techniques. *International Journal of Pure and Applied Mathematics*, 119(15), 309– 323.
- Majeed, I., & Naaz, S. (2018). Current state of art of academic data mining and future vision. Indian Journal of Computer Science and Engineering (IJCSE), 09(02). https://doi.org/10. 21817/indjcse/2018/v9i2/180902026
- Alapont, J., Bella-Sanjuán, A., Ferri, C., Hernández-Orallo, J., Llopis-Llopis, J., & Ramírez-Quintana, M. (2005). Specialised tools for automating data mining for hospital management. In *Proceedings of the First East European Conference on Health Care Modelling and Computation*, Craiova, Romania, 31 August–2 September 2005; pp. 7–19.
- 4. Ramesh, V., Parkavi, P., & Ramar, K. (2013). Predicting student performance: A statistical and data mining approach. *International Journal of Computer Applications* 63(8).
- Abu Saa, A. (2016). Educational data mining and students' performance prediction. International Journal of Advanced Computer Science and Applications 7(5).
- 6. Khasanah, A. U., & Harwati. (2017). A comparative study to predict student's performance using educational data mining techniques. *IOP Conference Series Materials Science and Engineering 215*(1).
- Ashrafa, A., Anwerb, S., & Gufran Khan, M. (2018). A comparative study of predicting student's performance by use of data mining techniques. *American Scientific Research Journal* for Engineering, Technology, and Sciences (ASRJETS), 44(01), 122–136.
- Urkude, S., & Gupta, K. (2019). Student intervention system using machine learning techniques. International Journal of Engineering and Advanced Technology 8(6S3), 2061–2065
- 9. Vamshidharreddy, V. S., Saketh, A. S., & Gnanajeyaraman, R. (2009). Student's academic performance prediction using machine learning approach. *International Journal of Advanced Science and Technology* 29(09), 6731–6737.
- 10. Osmanbegovic, E., & Suljic, M. (2012). Data mining approach for predicting student performance. *Economic Review Journal of Economics and Business*, 10(1).
- Rahman, A. U. Sultan, K., Aldhafferi, N., & Alqahtani, A. (2018). Educational data mining for enhanced teaching and learning. *Journal of Theoretical and Applied Information Technology*, 96(14), 4417–4427.
- Kumar S. A. & Vijayalakshmi M. N. (2011). Efficiency of decision trees in predicting student's academic performance. In: First International Conference on Computer Science, Engineering and Applications, CS and IT 02 (pp. 335–343). Dubai.

- Shahiria, A. M., Husaina, W., & Abdul Rashida, N. (2015). A review on predicting student's performance using data mining techniques. *Science Direct, The Third Information Systems International Conference*, 72, 414–422.
- Lay, K. K., & Cho, A. (2019). Using Naive Bayesian classifier for predicting performance of a student. *International Journal of Trend in Scientific Research and Development (ijtsrd)*, 3(05), 1387–1391.
- Dhilipan, J., Vijayalakshmi, N., Suriya, S., & Christopher, A. (2021). Prediction of students performance using machine learning. *IOP Conference Series Materials Science and Engineering*, 1055(1), 012122.
- Elakia, G., & Aarthi, N. J. (2014). Application of data mining in educational database for predicting behavioural patterns of the students. *International Journal of Computer Science* and Information Technologies, (IJCSIT), 5(3), 4649–4652 (2014)
- Thakar, P., Mehta, A., & Manisha. (2015). Performance analysis and prediction in educational data mining: a research travelogue. *International Journal of Computer Applications* 110(15).
- Afrin, F., Saiedur Rahaman, M., & Hamilton, M. (2020). Mining student responses to infer student satisfaction predictors. In *Seventh International Conference on Learning and Teaching* in Computing and Engineering (LaTiCE'20).
- Tarika, A., Aissab, H., & Yousef, F. (2021). Artificial intelligence and machine learning to predict student performance during the COVID-19. In *The 3rd International workshop on Big Data and Business Intelligence (BDBI 2021)* March 23–26, 2021, ScienceDirect Available online at www.sciencedirect.com Procedia Computer Science 184, 835–840.
- Hasan, R., Palaniappan, S., Mahmood, S., Abbas, A., Sarker, K. U., & Satta, M. U. (2020). Predicting student performance in higher educational institutions using video learning analytics and data mining techniques. Advanced Techniques in the Analysis and Prediction of Students' Behaviour in Technology-Enhanced Learning Contexts 10(11).
- Girkar, A., Khambayat, M., Waghmare, A., & Chaudhary, S. (2021). Subjective answer evaluation using natural language processing and machine learning. *International Research Journal of Engineering and Technology (IRJET)*, 08(04), 5040.
- 22. Zhu, Y. Z. T., Ning, H., & Liu, Z. (2021). Classroom student posture recognition based on an improved high-resolution network. *Research Square*,02.
- Patil, S. M., & Patil, S. (2014). Evaluating student descriptive answers using natural language processing. *International Journal of Engineering Research & Technology(IJERT)* 03(3).
- 24. Sayana, T. S. (2015). Prediction of students academic performance using data mining: Analysis. International Journal of Engineering Research & Technology (IJERT) Conference Proceedings.
- Agrawal, H., & Mavani, H. (2015). Student Performance Prediction Using Machine Learning. International Journal Of Engineering Research and Technology (IJERT), 4(03).
- Bhogan, S., Sawant, K., Naik, P., Shaikh, R., Diukar, O., & Dessai, S. (2017). Predicting student performance based on clustering and classification. *IOSR Journal Of Computer Engineering* (*IOSR-JCE*) 19(03), 49–52.
- Shrivastava, D., Kesarwani, S., Kadam, A.K., Chhibber, A., & Jayakumar, N. (2017). Online student feedback analysis system with sentiment analysis. *International Journal of Innovative Research in Science, Engineering and Technology*, 6(05).
- Patel, R., Agrawal, O., Gangani, Y., & Vishwakarma, A. (2018). College feedback system. International Research Journal of Engineering and Technology (IRJET), 05(01), 1351.
- 29. Patil, P., Patil, S., V. Miniyar, A., & Bandal. (2018). Subjective answer evaluation using machine learning. *International Journal of Pure and Applied Mathematics*, 118(24).
- 30. Joseph, R., & Ali, F. (2018) YOLOv3: An incremental improvement. *Computer Vision and Pattern Recognition.*
- Sya'iyah, K., Yuliansyah, H., & Arfiani, I. (2019). Clustering student data based on K-means algorithms. *International Journal Of Scientific & Technology Research* 8(08).
- Kamble, R. R., Patil, V. V., Bhujange, P. R., Kolawale, P. M., & Kamble, N. A. (2019). Student feedback system. *International Research Journal of Engineering and Technology (IRJET)*, 06(2), 550.

- 33. Berad, S., Jaybhaye, P., & Jawale, S. (2019). AI answer verifier. *International Research Journal* of Engineering and Technology (IRJET), 06 (01).
- 34. Trung, Q., Nguyen, H. T. B., Duy, T., & Bui, P. D. (2019). N.T, Student postures and gestures recognition system for adaptive learning improvement. In 6th NAFOSTED Conference on Information and Computer Science (NICS) Conference.
- 35. Rosy Salomi Victoria, D., Viola Grace Vinitha, P., & Sathya, R. (2020). Intelligent short answer assessment using machine learning. *International Journal of Engineering and Advanced Technology (IJEAT)*, 9(04), 1111.
- 36. Agricola, B. T., Prins, F. J., Dominique M. & Sluijsmans, A. (2020). Impact of feedback request forms and verbal feedback on higher education students' feedback perception, self-efficacy, and motivation. *Assessment in education: Principles, Policy and Practice* 27(1).
- Khalkho, V. S., Malik, S., S. K., & Rama, S. (2021). Automated subjective answer evaluation. International Journal of Engineering Science and Computing (IJESC), 11(05).
- Aslam, S., & Emmanuel, P. (2010). Formulating a researchable question: A critical step for facilitating good clinical research. *Indian J Sex Transm Dis AIDS*, 31(1), 47–50.
- Agarwal B. B., & Tayal, S. P. (Eds.). (2006). Book Data mining and data warehousing kindle (2006)
- 40. Agarwal, B. B. & Tayal S. P. (2007). Book data mining and data warehousing Kindle.