Pantnagar Journal of Research

(Formerly International Journal of Basic and Applied Agricultural Research ISSN : 2349-8765)

G.B. Pant University of Agriculture & Technology, Pantnagar

ADVISORYBOARD

Patron

Dr. Tej Partap, Vice-Chancellor, G.B. Pant University of Agriculture and Technology, Pantnagar, India Members

Dr. A.S. Nain, Ph.D., Director Research, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. A.K. Sharma, Ph.D., Director, Extension Education, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. S.K. Kashyap, Ph.D., Dean, College of Agriculture, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. N.S. Jadon, Ph.D., Dean, College of Veterinary & Animal Sciences, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. K.P. Raverkar, Ph.D., Dean, College of Post Graduate Studies, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. Sandeep Arora, Ph.D., Dean, College of Basic Sciences & Humanities, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. Alaknanda Ashok, Ph.D., Dean, College of Technology, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. Alka Goel, Ph.D., Dean, College of Home Science, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. R.S. Chauhan, Ph.D., Dean, College of Fisheries, G.B. Pant University of Agri. & Tech., Pantnagar, India

Dr. R.S. Jadaun, Ph.D., Dean, College of Agribusiness Management, G.B. Pant University of Agri. & Tech., Pantnagar, India

EDITORIALBOARD

Members

Prof. A.K. Misra, Ph.D., Chairman, Agricultural Scientists Recruitment Board, Krishi Anusandhan Bhavan I, New Delhi, India

Dr. Anand Shukla, Director, Reefberry Foodex Pvt. Ltd., Veraval, Gujarat, India

Dr. Anil Kumar, Ph.D., Director, Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India

Dr. Ashok K. Mishra, Ph.D., Kemper and Ethel Marley Foundation Chair, W P Carey Business School, Arizona State University, U.S.A

Dr. B.B. Singh, Ph.D., Visiting Professor and Senior Fellow, Dept. of Soil and Crop Sciences and Borlaug Institute for International Agriculture, Texas A&M University, U.S.A.

Prof. Binod Kumar Kanaujia, Ph.D., Professor, School of Computational and Integrative Sciences, Jawahar Lal Nehru University, New Delhi, India

Dr. D. Ratna Kumari, Ph.D., Associate Dean, College of Community / Home Science, PJTSAU, Hyderabad, India

Dr. Deepak Pant, Ph.D., Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Belgium

Dr. Desirazu N. Rao, Ph.D., Professor, Department of Biochemistry, Indian Institute of Science, Bangalore, India

Dr. G.K. Garg, Ph.D., Dean (Retired), College of Basic Sciences & Humanities, G.B. Pant University of Agric. & Tech., Pantnagar, India

Dr. Humnath Bhandari, Ph.D., IRRI Representative for Bangladesh, Agricultural Economist, Agrifood Policy Platform, Philippines

Dr. Indu S Sawant, Ph.D., Director, ICAR - National Research Centre for Grapes, Pune, India

Dr. Kuldeep Singh, Ph.D., Director, ICAR - National Bureau of Plant Genetic Resources, New Delhi, India

Dr. M.P. Pandey, Ph.D., Ex. Vice Chancellor, BAU, Ranchi & IGKV, Raipur and Director General, IAT, Allahabad, India

Dr. Martin Mortimer, Ph.D., Professor, The Centre of Excellence for Sustainable Food Systems, University of Liverpool, United Kingdom

Dr. Muneshwar Singh, Ph.D., Project Coordinator AICRP- LTFE, ICAR - Indian Institute of Soil Science, Bhopal, India

Prof. Omkar, Ph.D., Professor, Department of Zoology, University of Lucknow, India

Dr. P.C. Srivastav, Ph.D., Professor, Department of Soil Science, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Dr. Prashant Srivastava, Ph.D., Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of South Australia, Australia

Dr. Puneet Srivastava, Ph.D., Director, Water Resources Center, Butler-Cunningham Eminent Scholar, Professor, Biosystems Engineering, Auburn University, U.S.A.

Dr. R.C. Chaudhary, Ph.D., Chairman, Participatory Rural Development Foundation, Gorakhpur, India

Dr. R.K. Singh, Ph.D., Director & Vice Chancellor, ICAR-Indian Veterinary Research Institute, Izatnagar, U.P., India

Prof. Ramesh Kanwar, Ph.D., Charles F. Curtiss Distinguished Professor of Water Resources Engineering, Iowa State University, U.S.A.

Dr. S.N. Maurya, Ph.D., Professor (Retired), Department of Gynecology & Obstetrics, G.B. Pant University of Agric. & Tech., Pantnagar, India

Dr. Sham S. Goyal, Ph.D., Professor (Retired), Faculty of Agriculture and Environmental Sciences, University of California, Davis, U.S.A. Prof. Umesh Varshney, Ph.D., Professor, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India Prof. V.D. Sharma, Ph.D., Dean Academics, SAI Group of Institutions, Dehradun, India

Dr. V.K. Singh, Ph.D., Head, Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, India

Dr. Vijay P. Singh, Ph.D., Distinguished Professor, Caroline and William N. Lehrer Distinguished Chair in Water Engineering, Department of Biological Agricultural Engineering, Texas A&M University, U.S.A.

Dr. Vinay Mehrotra, Ph.D., President, Vinlax Canada Inc., Canada

Editor-in-Chief

Dr. Manoranjan Dutta, Head Crop Improvement Division (Retd.), National Bureau of Plant Genetic Resources, New Delhi, India

Managing Editor

Dr. S.N. Tiwari, Ph.D., Professor, Department of Entomology, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Assistant Managing Editor

Dr. Jyotsna Yadav, Ph.D., Research Editor, Directorate of Research, G.B. Pant University of Agriculture and Technology, Pantnagar, India

Technical Manager

Dr. S.D. Samantray, Ph.D., Professor, Department of Computer Science and Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, India

PANTNAGAR JOURNAL OF RESEARCH

Vol. 19(3)

September-December, 2021

CONTENTS

Unrevealing the role of epistasis through Triple Test Cross in Indian mustard NARENDER SINGH, USHA PANT, NEHA DAHIYA, SHARAD PANDEY, A. K. PANDEY and SAMEER CHATURVEDI	330
Testing of InfoCrop model to optimize farm resources for mustard crop under <i>tarai</i> region of Uttarakhand	335
MANISHA TAMTA, RAVI KIRAN, ANIL SHUKLA, A. S. NAIN and RAJEEV RANJAN	
<i>In vitro</i> evaluation of endophytes and consortium for their plant growth promoting activities on rice seeds DAS, J., DEVI, R.K.T. and BARUAH, J.J.	342
Effect of subsurface placement of vermicompost manure on growth and yield of wheat (<i>Triticum aestivum</i> L. Var. UP 2526) ABHISHEK KUMAR and JAYANT SINGH	348
Assessment of different nutrient management approaches for grain yield, gluten content and net income of common bread wheat (<i>Triticum aestivum</i> l.) in Western Himalayan region of Uttarakhand BHAWANA RANA and HIMANSHU VERMA	359
Suitability assessment of land resources forc assava(<i>Manihot esculentus</i> L.) and yam (<i>Dioscorea spp L.</i>) cultivation in Khana LGA, Rivers State, Southern Nigeria PETER, K.D., UMWENI, A.S. and BAKARE, A.O.	367
Biophysical and biochemical characters conferring resistance against pod borers in pigeonpea PARUL DOBHAL, R. P. MAURYA, PARUL SUYAL and S.K. VERMA	375
Population dynamics of major insect pest fauna and their natural enemies in Soybean SUDHA MATHPAL, NEETA GAUR, RASHMI JOSHI and KAMAL KISHOR	385
Fumigant toxicity of some essential oils and their combinations against <i>Rhyzopertha dominica</i> (Fabricius) and <i>Sitophilus oryzae</i> (Linnaeus) NIDHI TEWARI and S. N. TIWARI	389
Long term efficacy of some essential oils against <i>Rhyzopertha dominica</i> (Fabricius) and <i>Sitophilus oryzae</i> (Linnaeus) NIDHI TEWARI and S. N. TIWARI	400
Management strategies under chemicals, liquid organic amendments and plant extracts against black scurf of potato caused by <i>Rhizoctonia solani</i> Kühn in <i>tarai</i> regions of Uttarakhand SURAJ ADHIKARI, SHAILBALA SHARMA, R. P. SINGH, SUNITA T. PANDEY and VIVEK SINGH	408
Effective management strategies against ginger rhizome rot caused by <i>Fusarium solani</i> by the application of chemicals, bioagents and Herbal <i>Kunapajala</i> in mid hills of Uttarakhand SONAM BHATT, LAXMI RAWAT and T. S. BISHT	417

Distribution and morphological characterisation of isolates of <i>Fusarium moniliforme</i> fsp. <i>subglutinans</i> causing Pokkah Boeng disease of sugarcane in different sugarcane growing areas of Udham Singh Nagar district of Uttarakhand HINA KAUSAR, BHAGYASHREE BHATT and GEETA SHARMA	429
Biointensive management of <i>Meloidogyne enterolobii</i> in tomato under glasshouse conditions SHUBHAM KUMAR, ROOPALI SHARMA, SATYA KUMAR and BHUPESH CHANDRA KABDWAL	435
Effect of pre-harvest application of eco-friendly chemicals and fruit bagging on yield and fruit quality of mango KIRAN KOTHIYAL, A. K. SINGH, K. P. SINGH and PRATIBHA	447
A valid and reliable nutrition knowledge questionnaire: an aid to assess the nutrition friendliness of schools of Dehradun, Uttarakhand EKTA BELWAL, ARCHANA KUSHWAHA, SARITA SRIVASTAVA, C.S. CHOPRA and ANIL KUMAR SHUKLA	452
Potential of common leaves of India as a source of Leaf Protein Concentrate RUSHDA ANAM MALIK, SHAYANI BOSE, ANURADHA DUTTA, DEEPA JOSHI, NIVEDITA, N.C. SHAHI, RAMAN MANOHARLALand G.V.S. SAIPRASAD	460
Job strain and muscle fatigue in small scale unorganized agri enterprises DEEPA VINAY, SEEMA KWATRA, SUNEETA SHARMA and KANCHAN SHILLA	466
Drudgery reduction of farm women involved in weeding of soybean crop SHALINI CHAKRABORTY	475
Childhood obesity and its association with hypertension among school-going children of Dehradun, Uttarakhand EKTA BELWAL, K. UMA DEVI and APARNA KUNA	482
Spring water and it's quality assessment for drinking purpose: A review SURABHI CHAND, H.J. PRASAD and JYOTHI PRASAD	489
Spatial distribution of water quality for Indo-Gangetic alluvial plain using Q-GIS SONALI KUMARA, VINOD KUMAR and ARVIND SINGH TOMAR	497
Application of geospatial techniques in morphometric analysis of sub-watersheds of Nanak Sagar Catchment AISHWARYA AWARI, DHEERAJ KUMAR, PANKAJ KUMAR, R. P. SINGH and YOGENDRA KUMAR	505
Evaluation of selected carbon sources in biofloc production and carps growth performance HAZIQ QAYOOM LONE, ASHUTOSH MISHRA, HEMA TEWARI, R.N. RAM and N.N. PANDEY	516
Calcium phosphate nanoparticles: a potential vaccine adjuvant YASHPAL SINGH and MUMTESH KUMAR SAXENA	523
Factors affecting some economic traits in Sahiwal Cattle DEVESH SINGH, C. B. SINGH, SHIVE KUMAR, B.N. SHAHI, BALVIR SINGH KHADDA, S. B. BHARDWAJ and SHIWANSHU TIWARI	528
The effect of probiotics and growth stimulants on growth performance of Murrah Buffalo SAMEER PANDEY, RAJ KUMAR, D.S. SAHU, SHIWANSHU TIWARI, PAWAN KUMAR, ATUL SHARMAand KARTIK TOMAR	532

Population dynamics of major insect pest fauna and their natural enemies in Soybean

SUDHA MATHPAL, NEETA GAUR, RASHMI JOSHI and KAMAL KISHOR

Department of Entomology, College of Agriculture, College of Technology, G. B. Pant University of Agriculture and Technology, Pantnagar-263145 (U.S. Nagar, Uttarakhand)

ABSTRACT: Soybean, together with all other oilseeds, accounts for the majority of the diet and is hence the most significant crop. During Kharif 2020, this study was carried out in Pantnagar, Uttarakhand, to collect data on the pest complex and natural enemies linked with the soybean. During the course of the study, 35 insect pest species were identified, with 8 major pests (Stem Fly, Girdle Beetle, Bihar hairy caterpillar, Tobacco caterpillar, Green semilooper, White fly and Aphids) being described. To determine the natural potential for addressing insect problems, the accompanying natural enemies were also recorded. The results of this study shows that the peak activity of different insect pest at particular time such as stem fly was observed in the third week of September with 100% of infestation while the peak activity of lepidopterous pests such as *Spodoptera litura* (5.3 larvae per meter row) and *Spilosoma obliqua* (7.3 larvae per meter row) were found in the last and second week of September respectively. The sucking pests (white fly and aphids) were found on their peak at the first week of September with 16.6 pests per plant. The natural enemies including coccinellid, spiders, syrphid flies and pentatomid bug were also noticed preying on the pests. The findings of this study will aid in the development of effective insect pest management strategies, particularly against the mentioned pest with the involvement of natural enemies.

Key words: Insect pest management, infestation, natural enemies, pest complex, Soybean

Soybean (*Glycine max* L. Merrill) is the main staple meal with a high protein and oil content. Soybean is commonly known as "golden bean, miracle bean, crop of the planet". It is primarily grown as an oilseed rather than a pulse crop, and India is the large producer of this crop including 1.326 million metric ton production with cultivated area of about 1.1 million hectares (FAOSTAT, 2019). Insects wreak havoc on the soybean crop from seeding to harvest. In Pantnagar, over a dozen insect pest species, including stem borer, defoliators, and sucking pests, attacks the soybean crop, with the majority belonging to the Lepidoptera, Hemiptera, Coleoptera, Homoptera, and Diptera orders (Pushpendra et al., 2008). There are numerous insect pests that cause varied degrees of agricultural damage, resulting in lower yields, necessitating efficient pest management. Understanding the diversity of insect in their particular ecological setting is a critical step in designing long-term pest management methods. However, the natural enemies plays an important role in the pest management under biological control using introduced or native parasitoids and predators may render better control over the pest and the yield of soybean may be increased through proper

management or improving the natural enemies. Therefore, there is a great need to explore the native biocontrol agents of this devastating pest so that, these could be incorporated in pest management programmes (Manimala *et al.*, 2021). Thus, the purpose of this study was to gather preliminary data on the occurrence and diversity of insect pests and their natural enemies currently in this region so that proper control measures can be used and this study can be used as a basis for further information for the pests management programme.

MATERIALS AND METHODS

The experiment was conducted during *Kharif* 2020 in the Norman E. Borlaug Crop Research Centre (NEBCRC), G B Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar. Pantnagar is situated near the foot hills of Shivalik range (29.0222^o N, 79.4908^o E) and has humid subtropical climate with hot dry summer, wet and rainy season and cold winters. The temperature may reach upto 43^oC in summer and 4^oC during winters. For this study, soybean variety Bragg was sown (100 m²) in last week of June and normal agronomic practices were followed. Observations on insect pests and their natural enemies were taken at weekly interval from ten randomly selected and tagged plants. Each insect pest was examined and recorded at the time of its first appearance and the stage of crop. The type of damage caused by the insects, as well as their feeding habits was closely examined. The Per centage of infestation was estimated using the formulae below (Suyal *et al.*, 2018).

Infestation $\% = \frac{\text{No. of Plants infested}}{\text{Total no. of uprooted plants}} \ge 100$

RESULTS AND DISCUSSION

This study points out the population dynamics of insect pests linked with distinct growth stages of the soybean crop and studies on insect pest succession indicated that various insect attacked the soybean crop at different stage of development such as whitefly and aphids attack at vegetative stage while Lepidopterous pest attacks at flowering stage. Table 1 lists the most common soybean pests and the predators that were observed, their systemic position as well as status at peak activity. Major pests which were observed are white fly (Bemisia tabaci Genn.), Jassid (Empoasca kerri), aphid (Aphis gossypii), Bihar hairy caterpillar (Spilosoma obliqua), Tobacco caterpillar (Spodoptera litura), green semilooper (Chrysodeixis acuta), stem fly (Melanagromyza sojae) and girdle beetle (Oberea brevis). Table 2 illustrates the findings of this study, which revealed that stem fly infection increases with growth and is maximum in the month of September, with lepidopteran pests showing up in the third week of August. S. litura reached in its peak stage at the last

Table 1: Insect Pests and natural enemies observed on soybean during, *Kharif* 2020

S. No.			Systemic Position (Order: Family)	Status of peak activity		
1.	Stem Fly	Melanagromyza sojae	Diptera: Agromyzidae	Gradually increase till harvesting		
2.	Girdle Beetle	Oberea (Obereopsis) brevis	Coleoptera: Cerambycidae	First week of October		
3.	Bihar hairy caterpillar	Spilosoma obliqua	Lepidoptera: Noctuidae	Second week of September		
4.	Tobacco caterpillar	Spodoptera litura	Lepidoptera: Noctuidae	Last week of September		
5.	Green semilooper	Chrysodeixis acuta	Lepidoptera: Noctuidae	Second week of September		
6.	White fly	Bemisia tabaci	Hemiptera: Aleyrodidae	Second week of August		
7.	Aphids	Aphis glycines	Hemiptera:Aphididae	First week of September		
8.	Leaf folder/roller	Hedylepta indicata	Lepidoptera: Crambidae	Second week of September		
Natu	ral enemies (Predators)					
1.	Lady bird beetle	Coccinella septumpunctata	Coleoptera: Coccinellidae	Last week of August		
2.	Syrphid fly	Syritta pipiens	Diptera: Syrphidae	Last week of September		
3.	Pentatomid bug	Eocanthecona furcellata	Hemiptera: Pentatomidae	First week of October		
4.	Spider	Oxyopes satticus	Araneae: Oxyopidae	Second week of September		

Table 2: Seasonal incidence of major pests and their natural enemies in soyl	Dean during <i>Kharif</i> , 2020
--	----------------------------------

SW	Mean % Infestation		Mean no. of larvae		Mean no. of sucking per meter row length			No. of predators/plant pests/plant		
	Stem fly	S. litura	S. obliqua	Total	White fly	aphids	Total	Coccinellid	Eocanthecona Sp.	Total
31	45	0.0	0.0	0.0	3	2.3	5.1	1	0	1
32	48	0.0	0.0	0.0	5.6	3.6	9.2	1	0	1
33	51	0.0	1.3	1.3	8.0	4	12	1	0.6	1.6
34	53	0.6	3.3	3.9	4.6	3.6	8.2	2.3	0.6	3
35	59	4	5.6	9.6	7.0	9.6	16.6	2	1	3
36	83	2.6	7.3	9.9	4.3	7.3	11.6	1.3	1.6	3
37	98	2.3	4.6	6.9	5.3	8	13.3	1	2	3
38	100	5	2.3	7.3	7	4	11	0.6	1.6	2.2
39	100	5.3	4.6	8.6	6.3	1.3	7.6	0.0	1.3	1.9
40	100	5.3	3	8.3	5.3	1.6	6.9	0.3	2.3	2.6

SW - Standard week

week of September, while *S. obliqua* reached in its peak stage at the first week of September. This study also revealed that the white fly attacks the plants in seedling stage and the peak activity was found in the second week of August. The aphid population, on the other hand, fluctuates, with the greatest stage of infestation occurring in the first week of September. Natural enemies have a fascinating role to play in pest management. The coccinellid were appeared in the seedling stage of plant and their peak status found in the last week of August as the pest population increases. The population of *Eocanthecona furcellata* has been steadily increasing, with peak activity in the first week of October.

The current findings are consistent with those of Ahirwar *et al.* (2015) lepidopterous caterpillar density grew progressively, peaking at 3.2 larvae per meter row during the last week of August. Whitefly was found in greater numbers among the sucking pests. During the second week of August, the highest density of sucking pests was found, with 6.5 sucking pests/plant. Lady bird beetles, spiders, and lynx spiders were found preyed on sucking insects, while pentatomid bugs were preyed on lepidopterous larvae.

Suyal *et al.* (2018) also reported the prevalence of soybean pests in the JS-335 soybean variety. During the last week of August, the density of defoliators such as *Spodoptera litura* and *Spilosoma obliqua* grew progressively to a peak of 12.5 and 3.9 larva/ meter row lengths, respectively, while sucking pests such as *Bemisia tabaci* and *Aphis gossypii* were observed during mid of August. They find out the infestation of stem fly reached upto 100 % significantly related to our finding. They also observed the natural enemies i.e., *Coccinella septumpunctata* and *Eocanthecona furcellata* occurred during third week of August.

According to Paik *et al.* (2007) *S. litura* was seen in large numbers in late August in soybean fields. The results for stem fly infestation were quite similar to those of Kumar *et al.* (2018) who indicated that stem fly infestation lasted until the crop was harvested.

Infestation spiked in the last week of September, reaching a high of 100 per cent.

CONCLUSION

The aforementioned study concluded that the primary pests on soybean variety Bragg were Stem fly, tobacco caterpillar, BHC, green semilooper, whiteflies, and aphids. The third week of September shows the highest levels of stem fly infestation (100 per cent) and mid of September was observed as highest lepidopterous larvae i.e., S. litura (5.3 larvae per meter row length) and S. obliqua (7.3 larvae per meter row length) activity. During the second week of August, the white fly shows its peak infestation with 8.0 white fly per plant while the aphids (9.6 aphids per plant) shows highest level at first week of September. Natural enemies such as lady bird beetles, C. septumpunctata, were discovered dining on whiteflies among the predators, while the spider, Oxyopes sp., and a predatory pentatomid bug, Eocanthecona furcellata, were observed feeding on the lepidopterous larvae.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the G.B. Pant University for the support of labour cost, experimental land and research facility support.

REFERENCES

- Ahirwar, R., Dev, P. and Gupta, R. (2015). Seasonal incidence of major insect- pests and their biocontrol agents of soybean crop (Glycine max L. Merrill), *Scientific Research and Essays*, 10(12):402-406
- FAOSTAT (2019). Food and Agriculture Organization of the United Nations, 1/08/ 21.
- Kumar, T., Tomar, S. P. S., Singh, P., Bhadauria, N. K. S. and Bhadauria, N. S. (2018). Seasonal incidence of major insect pests of soybean in gird region central India, *Journal of Entomology and Zoology Studies*, 7(1): 447-450.
- Manimala, R.N., Agnihotri M. and Sam Raj, J.M.

(2021). Seasonal abundance of predatory coccinellid beetles in different cropping ecosystems at Pantnagar. *Pantnagar Journal of Research*, 19(2): 227-2318

Paik, C. H., Lee, G. H., Choi, M. Y., Seo, H. Y., Kim, D. H., Hwang, C. Y. and Kim, S. (2007). Status of the occurrence of insect pests and their natural enemies in soybean fields of Honam Province. *Kor. J. Appl. Ent.*, 46(2):275-280.

Pushpendra, Singh, K., Singh, B. V. and Gupta, M.

K. (2008). Pant Soybean 1225 - An Improved Variety of Soybean with Broad Genetic Base, *Soybean. Res.*, 6(1): 72-76.

Suyal, P., Gaur, N., Pramod R.K.N. and Devrani A. (2018). Seasonal incidence of insect pests and their natural enemies on soybean crop. *Journal of Entomology and Zoology Studies*, 6(4): 1237-124.

> Received: December 14, 2021 Accepted: December 29, 2021