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Being available in water and air, organic contaminants have easy access to animal bodies to
accumulate in the biological food chain, resisting chemical, biological, and photolytic degrada-
tion. Besides, they have the ability to travel great distances to end up being dispersed across a
broad area, even in places where they have never been used. Furthermore, they pose a significant
risk to both human society and the environment, which forces the international scientific
community to plan and act to eradicate organic pollutants from the environment and establish a
mechanism to stop their discharge. In this context, covalent organic frameworks (COFs)-based
materials are found to be promising to control air and water pollutants because of their unique
porous, and polymeric crystal structure. This study highlights the history, design, and
applications of COFs for reducing organic pollution, as well as the obstacles and opportunities
facing their widespread usage in environmental remediation today.
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1. Introduction

1.1. Importance of taming of organic
pollutants

Organic pollutants (OPs) are composed of toxic
ingredients based on carbonaceous compounds and
their increasing release and disposal have already
become a serious threat to living and the environ-
mental kingdom. Moreover, their long-time stability
in the environment is creating an even greater

§Corresponding author.

threat. Being recalcitrant and lipophilic in nature,
they affect greatly humans and wildlife by getting
accumulated in fatty tissues of creatures and stay-
ing there for long time.! It is assumed that around
90% of human beings get exposed to Ops in one way
or the other, causing health hazards. A lot of
investigations related to its response to photo-
catalytic oxidation have been done and are still
going on in search of an effective strategy to combat
OPs. A black list of OPs has been prepared based on
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their gravity of harmful effect following the
diplomatic signature of the stockhom convention.
Aldrin, dichlorodiphenyltrichloroethane (DDT),
dieldrin, endrin, heptachlor, chlordane, murex, and
toxaphene hexachlorobenzene and polychlorinated
biphenyls (PCBs), polychlorinated dibenzodioxins
(PCDDs) and polychlorinated dibenzofurans
(PCDFs) are dominating members in the list.” High
proclivity for biomagnification in food chain, linked
to carcinogenic and endocrine effects, make these
compounds hazardous.” An examination of human
adipose tissues from Europe, Africa, Asia revealed
the existence of OP residue. Toxic components of
pesticides on long time persistence are observed to
be more lethal for killing targeted microorganisms
bringing problem for humans and environment si-
multaneously. For instance, dichlorodiphenyldi-
chloroethanes (DDEs), a derivative of DDT, have
long half-life and get accumulated in adipose tissues
of humans posing severe health risk. DDT metabo-
lism may release DDE or DDE possessing food
staffs. However, when clarity of scientific informa-
tion is inadequate, any empirical decision is moni-
tored nationally or internationally due to
uncertainty of detrimental effects on environment,
therefore, elaborate research and development
ought to be done to detect health issues along with
their possible solution on a priority basis. Now, it is
well understood by scientific community about the
severity of OPs, and how dangerous these OPs can
be for the generations to come. Increasing industrial
development takes OPs pollution to environment
simultaneously will lead to deadly consequences,
including oxidative stress along with cell death.
Although developed countries like USA and Europe
have planned to eliminate OPs from environment
completely, developing countries are far behind even
to offer an effective thought to plan and execute suit-
able strategy to eradicate of OPs from nature. In this
context, electrochemical and photochemical strategies
have been considered as fascinating approaches for the
taming of OPs, requiring efficient catalytic materials.

1.2. Ezxpectations from covalent organic
frameworks for organic pollutants
taming

The COFs are considered an emerging type of
functional nanostructures possessing interesting
characteristics because of the exploitable combined
effect of high crystallinity, large surface and

adjustable pore size along with unique molecular
structure for various applications from energy to
environment. During recent times, a lot of investi-
gations involving novel strategies have been carried
out to treat Ops,® and COFs-based approaches,
out of all these protocols, have been recently studied
for taming of OPs, because they possess properties
suitable for treatment of Ops: (i) extended surface
area along with pore volume and high sorption
ability, (ii) availability of active sites to accommo-
date OPs chemisorption and/or degradation; (iii)
cavities suitable to undergo functionalization for
host—guest interaction; (iv) possibility of COFs
tailoring®; (v) possibility of large-scale production of
COFs as well as the chance of shaping them as
monoliths, pellets, membranes, or columns, being
used for the decontamination machines (Fig. 1).
The aim of using COFs is to address multiple
environmental issues simultaneously like selective
adsorption of OPs on COFs, which provides a
platform to undergo catalytic degradation of OPs.
Modification of COFs can be achieved via moni-
toring pore diameter or by making COF composites
with enhanced absorbing and/or catalytic abilities
for treatment of OPs. Moreover, although the use of
COFs has been reported in a wide variety of con-
texts, including gas storage,”® and various other
fields,”' due to the advantages associated with
their stability in aqueous media, even under extreme
conditions, however, how they might be used to
control organic pollutants is seldom reported.
Therefore, this review article is written to shed light
on how COFs can be used to clean up the environ-
ment to help humans living free of organic pollu-
tants. As such, this review’s primary objective is to
present a fresh perspective on several classes of
COF-based materials having potential usefulness.
Lastly, the key potential challenges and future
perspectives are also discussed in detail.

2. Science and Synthesis Approaches for
Covalent Organic Frameworks

Linking of properties and suitability of porous mate-
rials is made based on size shape, arrangement, and
porosity along with the composition of material.'!
Scientists are well engaged in this area to manipulate
composition along with structure of porous material
which is responsible for determining the control and
functionality of the internal surface of porous materi-
als. Modular construction utilizing molecular
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Fig. 1. A systematic representation of COF's features and their applications in OP taming.

components is a remarkable recent development that
can be connected to adjoin sub-unit,'?> which led to
receiving an outstanding porous material like COFs,
having carbon and other elements covalently bonded
open network.'? with precise control on structure and
composition. Independent tuning of pore geometries
as well as functionalities is offered by modular nature
of this material, which allows to compare and develop
connectivity among parameters individually. Appli-
cation of cost-effective and eco-friendly porous mate-
rial to tame organic pollutants is aresearch in demand,
by manipulating their structure and function in order
to improve their activities. COFs appear to be the
candidate of choice to address all challenges related to
environment remediation, sustainability along with
Ops treatment. In the following sub-sections, we
explored the science and engineering of COF's and how
to alter their features for OPs taming.

2.1. Chemistry of covalent organic
frameworks

The main challenge involved in extension of MOF
network to covalently bonded polymer is the ex-
tremely strong bond strength of many organic

functional groups, which do not participate in
dynamic exchange process like coordination
complexes. Therefore, organic molecules bonded
covalently with extended solid yield amorphous,
disordered material.'* Crystalline morphology was
obtained by drawing balance kinetics and thermo-
dynamic reversibility of the reaction as revealed by
Yaghi et al.'® who introduced the first two COF
members. 1,4-benzenediboronic acid (BDBA) and
2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)
were used to prepare a boronate ester-linked net-
work as 2D COF-5 maintaining reversible condition.
COF-5 utilizes hexagonal unit cell having porous
sheets stacked with 0.34nm interlayer spacing.
These structures along with 2D COF's got compared
in PyRD with simulated eclipsed as well as stag-
gered arrangement; no single-crystal structure of 2D
COF is available till now. COF-5 displays
1590m? g=! BET surface area, 2.7nm pore size
distribution and very high thermal stability along
with permanent porosity. In addition, self-conden-
sation BDBA yields 2D COF and COF-1 along with
COF-5 as the only example of staggered interlayer
stacking, which allowed expansion of COF material
via linking with organic unit covalently like B-O,
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C-N, C-C [11m,5c,61]. Owing to diversity of or-
ganic synthesis, COF's offer limitless possible design
space through incorporation of various functional
groups for many applications. Monitoring of
geometry, size and functionality of building unit is
possible in both atomic layer structure as well as
framework structure. Thus, COF has the liberty to
offer a combination of the following properties un-
available in other materials.

Low Density: Light elements having high gravi-
metric performance for guest molecule are selectively
used for construction of COFs to be used for energy
storage. For instance, COF-108 has extremely low
density of 0.1 g/cc compared to any crystalline solid. "¢

Stability: COF's, since they are linked via robust
covalent bond, display higher stability when com-
pared with most of the other materials. Very
recently advancement in COF's structure took place
through hydrogen bonding interference, weakening
the polarity of ammine bond, incorporation of
enol-keto tautomerism or following Michael-addi-
tion-elimination/benzoxazole strategy.”'” These
approaches induce COFs to earn stability during
hydrolysis, in variable pH range and redox envi-
ronment, which are rarely available in MOFs.

Crystallinity: Being crystalline, COF's are able to
offer the option for introduction of positional func-
tional groups in a very precise and controlled way,
providing structure property coordination and
characterization by diffraction methods. Opto-elec-
tronic devices and catalysis require this potential
structural uniformity too.

Porosity: Having periodic and uniform porosity,
COFs ensure superior performance in catalytic
reaction and gas separation due to full excess to
pores. 2D and 3D COFs with 3000 and 5000 m?3 g1
surface area are reported.

Modularity: Proper selection of building block
before synthesis can successfully utilize versatile
properties of COFs, thereby offering scientists the
possibility of managing composition as well as ar-
chitecture in porous and crystalline materials with
control on density, functionality along with active
site special arrangement. Incorporation of monomer
with reduced symmetry, various components with
viable length multiple bond forming process or
metal coordination approaches enrich COF's struc-
ture with ability to control more sophistically.
Based on functions and properties expected, COF's
may have three structural label designs; skeleton,
pore, and complimentary design of pore and

skeleton.'®” COFs, a gift of nature in the form of a
platform for molecular assembly are far away from
complete exploitation.

2.2. Destigning principles of covalent
organic frameworks

The main aspect of COFs design is actually to ex-
tend the polymer backbone growth through elabo-
ration of direction of covalent bond formation.
Relatively rigid backbone of monomers with distinct
geometry of distributed sites is needed in order to
clear the direction of individual covalent bond.
Within this framework, fabrication of COFs-based
two/three dimensional (2D/3D) nanoarchitectures
is getting immense attraction due to their tunable
electronic and optical properties.?’?> Therefore,
extensive research has been conducted in the past
mainly focusing on the use of COFs-based materials
to utilize their intrinsic advantages in the
termination of organic pollutants. In addition,
the functionality of porosity with tunable structural
properties of COFs might be further improved to
boost the performances of these materials.
The COFs structures have an extremely high po-
rosity and a high surface-to-volume ratio, which
makes them easy for molecules and ions to enter the
frameworks and accumulate around the
active sites.”??

Within the context of the materials, the con-
struction wedges of diverse structure and chemical
properties might be systematically and logically
integrated to provide synergistic function char-
acteristics for the intended applications of COFs.
Moreover, COFs are able to manipulate their spatial
environment in 2D or 3D space via controlling the
building block’s coupling, possessing high surface
area, lightness, chemical stability, low density, and
simplicity of functional designs compared to tradi-
tional materials.”* The first report on COFs syn-
thesis was published by Yaghi et al., in 2005.2° After
that, a number of different COF-based material
were published, by using a wide variety of organic
covalent linkers, including sp®-carbon,?® b-ketona-
mine,?” phenazine,”® triazine,”” imide,*’ azine,*'
hydrazone or boronic ester,*” imine,** and borox-
ine.*! Figure 2 showed the chemical structure of
some organic linkers.

COFs are formed via condensation reactions
between rigid monomers and symmetrical reactive
groups acting as edges or apexes. The number (n) of
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Structure of (a) 1,3,5-triformylbenzene, (b) cyanuric chloride, (c) 1,4-diaminobenzene, (d) 2,4,6-triformylglucinol, (e) 1,3,5-

tris-(4-formylphenyl)-amine, (f) biphenyl-4,4-diboric acid and (g) 1,3,5-tris-(4-formylphenyl)-triazine, linkers.

symmetric reactive groups in these monomers is
represented by the geometry matching symbol C,,,**
which leads to the formation of various polygon
skeletons (Fig. 3). For instance, the combination of
1,3,5-tri-(4-aminophenyl)benzene (Cs) and
2,5-dimethoxyterephthalaldehyde (Cs) yields a
hexagonal COF.!” The self-adjustments of organic
linkers during condensation reactions to construct
the COFs architectures are partially reversible,*’
therefore, their stability as well as properties can be
altered by changing the linkers.? significantly.
Using this concept, different types of 2D/3D COFs
were constructed, having good crystallinity as well
as high stability. The interlayer interaction and the

- - +\I/ PR g At+—+ 1
lCz C, lc3 C, | C, C, fl C,
Hexagonal Hexagonal Hexagonal  Hexagonal
>x<_ -
S+ K X +
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Tetragonal  Trigonal Rhombic Dual-pore kagome
Fig. 3. Topological pictures of 2D-COFs. Taken with per-

mission.* Copyrights 2019, Elsevier publishing group.

strength of covalent bonds are two crucial features
that govern the structural stability of COFs.?”
Moreover, it is well known that COFs have varying
pore architectures because of the creation of robust
topological frameworks. Two basic forms of COFs
exist in nature, distinguished by the dimensions of
their constituent building components.*® Most 2D
COFs are fabricated by extending the covalent
bonds between linker moieties to 2D atomic layers
via pi—pi stacking to create highly layered structures
with a high specific surface area. On the other hand,
3D COF's can be constructed using the assembly of
molecular linkers or covalent linkages with a higher
surface area than 2D COFSs, however, due to the
limited variety of tetrahedron-type knots, they are
less prevalent. Out of the wvarious synthetic
approaches tried for the production of COFs, the
solvothermal,”> iono-thermal,’’ and mechano-
chemical,*! microwave-heating’? methods were ob-
served to be efficient and are discussed in the next
sub-section in detail.

2.3. Synthesis approaches of covalent
organic frameworks

The synthesis of organic molecules follows the pro-
tocol for irreversible bond formation monitored by
kinetics. In case of reversible condition, the mis-
matched covalent bond gets corrected through
rupture followed by thermodynamically monitored
product formation, having self-healing structure.
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Defect-free final structure formation from reaction
components having multiple reaction sites proceeds
with self-healing properties. In poly-condensation
systems thermodynamically stable polymers may
be produced due to reversible reaction.*® Ordered
and pre-designed connection of organic units to be
linked covalently is the main theme of the topology
diagram for COFs along with multiple reactive
sites to support growing extended polymer struc-
ture. Reversible covalent bond formation reaction
is needed for COFs synthesis.***> Compound pos-
sessing phenazine linkage, dioxin linkage and C=C
linkage following irreversible nucleophilic aromatic
substitution reaction.?®*” was reported to initiate
the development of COFs.

Solvothermal synthesis: Solvothermal synthesis is
the most widely employed protocol for COFs
synthesis, in which reaction criteria depend on sol-
ubility and reactivity of building blocks along with
reversibility of the reaction. In addition, to prepare
crystalline porous COF's following the solvothermal
process, temperature, reaction time, solvent
condition, and catalyst quantity play a vital role.
A synthesis strategy involves use of monomer for
vertices and edges along with the catalyst and sol-
vent being placed in a pyrex tube. The material is
allowed for sonication for a short time followed by
degassing through freeze-pump-thaw cycles sealed
with a gas burner and rest for some time at the
required temperature. The precipitate is received
through centrifugation/filtration after cooling at
room temperature followed by solvent washing or
by soxhelt extraction. The residue gets dried at
80-120°C in vacuum and is kept under Ny/Ar in
the dark. TPT-COF-1 can be synthesized using
2,4,6-tris-(4-aminophenoxy)-1,3,5-triazine ~ (TPT-
NH-2) on gram scale and was found to possess
BET surface area of 1589 m? g=! with high crys-
tallinity.*®

Microwave synthesis: Having the disadvantage of
long reaction time in solvothermal strategy, micro-
wave protocol has been tried for fast synthesis of
porous COF's. Boronate-ester-linked COF-5, COF-
102,* and imine-linked TpPa-COF."" are reported
to be prepared successfully using microwave meth-
od. A simple microwave strategy involves sealing of
a mixture of monomer solvent in microwave tube
under vacuum or N, followed by stirring in heated
condition at desired temperature for 1 h. For boron-
based COF-5 and COF-102, the crude material is

mixed with acetone at 65°C and stirred for 20 min.
The precipitate is collected via filtration and
dried in vacuum. The important feature of
microwave solvent extraction method is that it can
discard oligomers easily and COFs have better
porosity.

Tono-thermal Synthesis: In spite of the fact that
they possess a variety of monomers, the majority of
the CTFs are amorphous and are short of large
molecular orderings. However, CTF-1 and CTF-2
prepared in iono-thermal conditions possess crys-
talline porous materials.”” Typically, ZnCl, along
with monomer is kept in Pyrex ampule, sealed, and
followed by heating at 400°C for 40h. Following
heating, it is cooled, crushed and washed with water
to remove excess ZnCly. The powder in dilute HCI
gets stirred for 15h to remove any ZnCl, left, fil-
tered followed by washing with H,O and THF and
dried in vacuum to obtain CTF-1 and CTF-2.
Molten salt, during synthesis, acts as solvent
along with catalyzing the trimerization reaction
simultaneously, which is believed to be reversible
at this temperature. CTF-1 synthesis using
para-toluene sulfonic acid as catalyst in micro-
wave condition has been reported recently.’! In
this context, ionic liquid if used as solvent may
offer green and simple synthetic protocol to pre-
pare 3D COFs and a series of many 3D
COFs ionic liquid possessing COFs have been
reported.”?

Mechanochemical Synthesis: It is well known
that both solvothermal and microwave methods are
employed with lots of complications which promp-
ted researchers to search for a reliable and simple
synthetic protocol for this purpose. Mechanochem-
ical synthesis proceeds through bond formation via
cost-effective, ecofriendly simple route addressing
the limitations of solvothermal methods. In this
approach, monomers are grounded in mortar at
room temperature to prepare COFs including
TpPa-1, TpPa-2, TpPa-NO,, TpPa-F4, TpBD,
TpBD-(NO;),, TpBD-Me,, and TpBD-(Ome),.7*73
In order to utilize the entire potential of this
protocol in properly optimized mechanochemical
conditions, the grinding method assisted by liquid is
already developed. A little quantity of catalyst is
mixed in the mortar in order to increase the
reaction rate via facilitation of uniformity of
reactants, which eventually brings better
crystallinity.

2330005-6



Nano LIFE Downloaded from www.worldscientific.com
by UNIVERSITY OF CINCINNATI on 08/15/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

2.4. Mod:ification in covalent organic
frameworks-based architectures

Changing the architectures on which COFs are
based is an intriguing way to take advantage of their
chemical features. Changing the linkers or chemi-
cally altering the structure of the organic linker are
common approaches to manipulate the COFs. Be-
sides, the coordination allows a single metal atom to
bind to numerous ligands, which increases the
strength of the immobilization and the stability of
the system.

The OH-containing imine-linked COF”® dem-
onstrated that a chelating Schiff base could form a
robust coordination bond with metals. It has also
been shown that these COFs are thermally stable
at temperatures above 350°C. Finally, ligand sites
for metal attachment can be made by using the
ligand activity already present in the mono-
mers.”%°" The most extensively utilized linkers in
the production of COFs possessing ligand func-
tionality are porphyrins in particular. These or-
ganic compounds are extensively studied as
biomimetic catalysts. The porphyrin ring’s core
pyrrolic N-donor atoms can stabilize most of the
metal ions.”>"® Figure 4 depicts a scheme of met-
alized porphyrin COFs.

Taming of Organic Pollutants

Furthermore, COF tunability is a measure of their
applicability®”%! To functionalize COFs, addition
and substitution operations are the most common
approaches. After synthesis, COFs can be altered by
incorporating more functional groups to increase
their usefulness in various applications. Therefore,
aromatic and aliphatic moieties containing -COOR,
—COOH, -OH, and -SH functional groups can be
incorporated into the COF frameworks via chemical
reactions®®%® (Fig. 5). Alkyl chain halogenation,®
alkali metal salt production,’® and aromatic nucleo-
philic substitution of aryl fluorides®® are also other
ways to change the structure of a molecule. Usually,
prepared COFs occur in the form of polycrystalline
solids which normally exhibit crystalline-type
domains with average range of ~ 50-500 nm,’” indi-
cating bulk COF particles (100-1000m) being
formed by aggregation of NPs crystallites (Fig. 6).

Synthetic approaches are commonly employed to
control crystallite size and development through
multi-dimensional covalent polymerization.®® The
amorphous phase gets suppressed by thermody-
namic and kinetic monitoring, allowing the crys-
talline phase to grow.””"! Multiple nucleating sites,
on the other hand, stifle development and cause
crystallization defects, resulting nanoscale crystal-
line growth of most COFs. The assembling of

Fig. 4. Assembly of pre-metalized/post-metalized Por-based COFs. Taken with permission.”® Copyrights 2018, ACS

publishing group.
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Fig. 5. Tllustration for the COF’s functionalization. Taken with permission.”® Copyrights 2021, Elsevier publishing group.

multiple crystallites into many nanostructures
determines the ultimate bulk COF state. The ag-
gregation of assembly of these nanosized motifs
created at the time of synthesis provides guideline
for bulk solid construction. Crystalline growth
usually creates three main nano-sized motifs: (i)
nanosheets, (ii) nanofibers, and (ili) nano-
spheres.”>”™® When growth happens along one di-
mension (z or y), nanofibers are formed, while
nanosheets are formed when growth occurs along
both dimensions (z and y). Nanospheres are formed
via the confinement and peripheral stability of edge-
crystallites. Such nanostructures are made using
dynamic polymerization, and they commonly crys-
tallize outside of the reaction system. As a result,
these nanostructures may be segregated with the
limitation of lack of justification for the same. Belts,
cubes, rectangular prisms, platelets, and other
known COF nano-morphologies (e.g., belts, cubes,
rectangular prisms, platelets, and so on) are
framework-specific and thus outside the scope of
this review.”>" Table 1 shows the synthesis strat-
egies and properties of the COF-based materials.

3. Applications of COFs-Based Materi-
als for the Taming of Organic
Pollutants

3.1. Photodegradation organic pollutants

Due to their high light absorption and narrow
bandwidth, COFs show significant promise as
semiconductor photocatalytic materials. These
characteristics make COF a promising contender as
novel heterogeneous photocatalysts, and some
obstacles must be overcome before they can be used
in environmental cleanup. COFs have fast photo-
catalytic activity because photo-electron—hole pairs
move slowly and the first recombination happens
quickly. Several reports are available on high-per-
formance ligands for designing high-performing
photocatalysts to degrade organic pollutants.
When exposed to light, the COF undergoes
electronic transitions that produce photogenerated
carriers like electrons and holes. Standard operating
procedures for photocatalytic degradation methods
of various COF composite materials typically
adhere to the aforementioned conditions. Due to
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mission.”® Copyright 2012, ACS publishing group.

their unique properties, COF materials and composite
materials have different valence and conduction band
configurations. Unfortunately, it is currently unable to
generalize the photocatalytic process of many COF-
composites. The photocatalytic process is known to

work by taking in light, separating electron—hole
pairs, and moving electrons. Photocatalysts can be
judged by their electronic states and their ability to
absorb light by looking at their diffuse reflectance
spectra in the ultraviolet—Vis range. Photocurrent

Table 1. Synthesis strategies, and properties of COF-based materials.

Synthesis Critical BET surface Pore volume Crystal
COFs method parameters (m?/g) (cm3/g)  Pore size structure References
PS-COF-1 Solvothermal 80°, 72h 2703 2.68 ~4.5nm 2D layered crystal 76
0-GS-COF Solvothermal 120°, 12h 51.5 7
COF-HAP Solvothermal 120°, 72h 26.9 0.14 15A  Crystalline 78
TaTp-1COF/CDs Hydrothermal Room 76 2.59nm Core-shell, 2D layered 79
temperature crystal
COF@PDA High-temperature 180°, 72h 118.2 Core—shell structure, 80
condensation amorphous
polymerization
Fe;0,@COFs In situ growth Room 55.7 0.12 Core—shell structure 81
temperature
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responses and electrochemical impedance spectroscopy
(EIS) are studied to assess more about MOF's’ charge-
separation performance. A PL emission spectrum can
be used to verify the charge transfer procedure. Since
PL signals are produced by the recombination of pho-
togenerated electron—hole pairs, they can be used to
analyze the entrapment, migration, and transfer of
photogenerated charge carriers (Fig. 7).”

Within this framework, Jiang et al.,** used dif-
ferent metal core porphyrins to make a set of new
2D COFs. In this study, MP-COFs were broken
down into their parts, which were a core porphyrin
monomer and different metals, to find out how their
carriers moved through them. Material made from
zinc porphyrins (ZnP-COF) and material made
from copper porphyrins (CuP-COF) had the same
hole and electron conduction properties (Fig. 8).
Porphyrin COFs provide two distinct paths for
electrical current to flow: hole conduction through
adjacent porphyrin molecular layers and electron
conduction through porphyrin metal cores. In MP-
COFs’ multilayer stack architectures, adjacent core
metals play a significant role in creating conductive
channels and regulating carrier movement. Because
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porphyrin metal centers can be used in different ways,
they have future prospects in the field of catalysis.
Moreover, the Cu-porphyrin-based COFs, as ef-
ficient photocatalysts for the breakdown of organic
pollutants, are emerging materials for environmen-
tal remediation. Studies of iron porphyrin-based
COF photocatalysts for the breakdown of organic
pollutant compounds are still in their infancy.** For
instance, conducting the Sonogashira—Hagihara
coupling reaction between iron (III) 5,10,15,20-tet-
rakis-(4-bromophenyl) porphins and 1,4-diethy-
nylbenzene was utilized to construct the Fe-
porphyrin-based COFs and applied for the photo-
catalytic degradation of organic pollutants. The
prepared material has shown good dye degradation
under visible light irradiation, demonstrating satis-
factory performance for the degradation of organic
polluting substances photocatalytically. This re-
search work paves the way for the potential appli-
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cations of porphyrin iron carbonate oxalate-based
COF in photocatalytic degradation.

It has become a common practice to use photo-
catalysts to convert peroxymonosulfate (PMS) or
peroxydisulfate (PS) to SO,* for wastewater treat-
ment. Since SO, has a high oxidizing potential and
may efficiently degrade new contaminants, it is
preferable to *OH. Two novel MOFs@COFs hybrids
were originally synthesized by Lv et al.®” using post-
synthesis methods; these hybrids include Nrch
structural units that activate PS to create SO,e,
resulting in the breakdown of bisphenol A. In con-
clusion, the solvothermal method was used to gen-
erate MOF materials like MIL-101-NH, and UiO-
66-NH,, as well as TpMA-based COF's. In addition,
two other MOFs@COFs hybrids, MIL-101-
NH,QTpMA and UiO-66-NH,@QTpMA, were also
prepared via covalent linkages between MOFs to
COFs under solvothermal methods [Fig. 9(a)].
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o TpMA
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(0] 23

(b)

(a) Chemical structures of UiO-66-NH,@QTpMA and MIL-101-NH,@QTpMA and (b) proposed photocatalytic mechanism

towards BPA degradation for MIL-101-NH,, UiO-66-NH,, COF-TpMA, MIL-101-NH,@TpMA and UiO-66-NH,@QTpMA. Taken

with permission.® Copyrights 2020, Elsevier publishing group.
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These MOFs@QCOFs-based hybrids were shown to
have potential to degrade BPA. Degradation effi-
ciency is influenced by three primary factors: (i) the
strong oxidizing capacity of SO}, (ii) the develop-
ment of heterostructures, and (iii) an increase in the
specific surface area of hybrid materials. Therefore,
the incorporation of PS drastically increased BPA
breakdown efficiency, revealing the critical function
of SO, in BPA oxidation. Moreover, the process
depicted in Fig. 9(b) was proposed as an explana-
tion for the hypothesized photocatalytic effect. In
this approach, SO} played a major role in the de-
composition of organic contaminants, and the pro-
cess by which these structures got formed was
referred as hetero-structure formation. The fact that
the PL strength of the composites MIL-101-
NH,@QTpMA and UiO-66-NH,@TpMA was lower
than the parent materials demonstrates that elec-
tron-recombination of the hole pairs was effectively
suppressed.

This change was motivated by three factors: (ii)
an increase in hybrid material specific surface area;
(iii) the ability of heterojunctions formed at the
interface of MIL-101-NH,, (or UiO-66-NH,) and
TpMA to further separate photogenerated electron—
hole pairs. Specific surface area was calculated using
N, adsorption—desorption isotherms, revealing a
range of increases among materials. Increases in
specific surface area result in a greater number of
potential active sites, which can boost photo-
catalytic efficiency. On the other hand, during
photocatalytic degradation, the role of free radicals
is widely acknowledged. Nonradical processes of
certain materials, such as singlet oxygen and direct
electron transfer, have also been observed and
reported with free radicals (SO,* and *0,)* In this
work, the authors demonstrate the photocatalytic
degradation of Orange II under PMS-mediated
AQOP conditions by anchoring COF to the surface of
g-C3N, using a post-synthesis modification
approach, resulting in a unique metal-free 3D-
structured catalyst. Figures 10(a) and 10(b) depict
the composite synthesis of COF (mechanical
grinding method), g-C3N,, and g-C3N,QCOF. To
create g-C3Ny, its three precursors (urea, melamine,
and dicyandiamide) were cooked in a muffle furnace
at 550°C for 4 h. Different g-C3N,QCOF composite
materials were developed following the discovery of
their porous structure and properties. Using urea as
a precursor, UCN@COF’s activity was observed to
be the most productive. The unique synthesis

between UCN and COF led to a high N concen-
tration of 25.2% in the UCNQCOF, which was
superior to most of the reported N-doped carbon
materials.

In addition, using nanocarbons as support for the
catalyst, hetero-atoms-doping the COFs-architec-
ture, electronic conductivity may be significantly
improved if electron-deficient N species were re-
sponsible for easily breaking the sp*-hybridized
carbon’s chemical inertness and boosting the
positive charge density on neighboring C atoms.
Interestingly, the opposite conclusion to the com-
monly held mechanism for PMS activation was
reached. Both EPR and quenching tests showed
that oxygen (O,), and not hydroxyl or sulphate, was
the primary reactive species in the g-C3N,QCOF/
PMS system. It was generally accepted that PMS
might spontaneously combust into oxygen.

For instance, in the case of UCN@QCOF, PMS
generated an unstable intermediate with the sp*
hybridized carbon networks, and the highly cova-
lent p electrons may have triggered the PMS O-O
bond to interact with adsorbed organic moieties in a
nonradical fashion. Additionally, it is possible that
*Q, is the primary reason for efficient 'O, generation
in the UCNQCOF/PMS system. Here, BQ was
employed to quench the production of oxygen (02).
Orange II's degradation was halted by BQ, sug-
gesting that *O, was created in this system. As a
catalyst, UCNQCOF has the potential to increase
PMS hydrolysis, leading to more production of Os,.
The oxidative treatment of organics by UCN@-
COF /nonradical PMS was successful because
UCNQCOF facilitated the passage of electrons from
Orange II to PMS. Within 45 min of implementing
the UCN@QCOF /PMS system, Orange II had en-
tirely degraded. The high specific surface area, rapid
mass transport, additional N-active sites, and syn-
ergistic action of g-C3N, with COFs to create O, are
all responsible for the remarkable activity of the
resulting UCNQCOF.

Several types of semiconductor metallic photo-
catalysis have been described during the past two
decades to convert organic polluting substances into
biodegradable molecules, including TiO,, ZnO,
CdS, and others. On the other hand, these photo-
catalysts have a number of drawbacks, including a
high band gap and photo-electron—hole combina-
tion, which reduces catalytic efficiency. Further-
more, under normal operating conditions, such
catalysts are unstable. Corrosion is commonly
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caused by irradiation in water-based systems.
The COFs with inorganic semiconductor photo-
catalysts are seen as a promising approach to ad-
dress these issues. For the degradation of bisphenol
A, Sun et al.®" synthesized a CdS/COF composite
photocatalyst using an ultrasonic-assisted synthesis
method (BPA). Figure 11 illustrates the prepara-
tion of CdS/COF composite, which has the highest
photocatalytic activity for BPA degradation,
degrading 85.68% of BPA in under 3h with 0.3 g/L
as optimum CdS/COF dose for BPA breakdown.
BPA degrades differently depending on the pH of
the surrounding environment. At a pH of 10, BPA
was easily adsorbed onto the catalyst surface, hav-
ing the greatest possible degrading effect. Together,
h*, «OH, and *O, will degrade BPA, with h* and
*O, playing crucial roles. Studies on cycling showed

3
g-C3N3@COFs

(a)

<
Orange-ll

(b)

(a) Fabrication process for g-C3N,@QCOF and (b) proposed radical/nonradical reaction pathways towards catalytic
Copyrights 2019, Elsevier publishing group.

that 0.5 wt.% CdS/COF was stable and reusable for
BPA degradation.

3.2. Adsorption of organic
contaminants

Because of their ability to alter the oxygen/nitrogen
balance of water, COF's pose a threat to aquatic life
and eco-systems. They can spread pollution over a
wide region through rivers and streams. In many
circumstances, only a tiny amount of the toxin is
needed to cause serious problems for eco-systems
and human health. Therefore, before being released
into a water system, organic contaminants should
be cleaned up as thoroughly as feasible. Therefore,
organic pollutants must be eliminated as much as
possible prior to being discharged into a water
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system.®®* Broadly resilient, and stable porosity,
as well as appropriate surface functional groups,
have shown promise for the adsorption of bulky
chemical compounds in COFs. Different adsorption
methods are available depending on the pollutants
and the COF used. Key adsorption mechanisms
include the pore-size effect,*” H-bonding,”’ hydro-
phobic interaction,”’*?> and p—p interaction,”’*? as
illustrated in Fig. 12 .

The capture of arylorganophosphorus flame
retardants®”“? reveals that the pore size itself may
be the deciding factor in the removal of a certain
adsorbent. It has been observed that pharmaceu-
tical chemicals can be adsorbed to materials based
on COF. As shown by Akpe et al.,® triazine COFs
had a sulfamethoxazole antibiotic removal capa-
bility of 483 mg/g in water. Primarily, adsorption
occurred through contact and hydrophobic inter-
actions. Selective adsorption employing two differ-
ent COFs with NO, (COF-NO,) and —-NH, (COF-
NH,) functionalities has been described for the
NSAIDs ketoprofen, ibuprofen, and naproxen.’* In
this case, the adsorbent’s pore size was found to be
responsible for TS-high COF-1’s adsorption ca-
pacity for MB (1691 mg/g). The high adsorption
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capacity of TS-COF-1 for MB (1691 mg/g) was
attributed to the small pore size of the adsorbent
and the large size of the adsorbate.”” Researchers
have also looked at the possibility of employing
b-cyclodextrin  (b-CD)-based 3D  crystalline
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COFs for the adsorption and removal of polar
micropollutants.”®

3.3. Dye removal, (organic pollutant
removal) from the water sample

Most COFs include inherent holes with diameters
between 1 and 3 nm, making them optimal for dye
separation. There are two ways to get rid of dyes
made with COF. Most often, NF is used to get rid of
dyes by means of a membrane. COFs can be made
by injecting COF's into a membrane matrix, or they
can be made directly from COFs. In this case, pore
size plays a major role in dye removal. The second
method is a charge- and size-selective process known
as dye molecule adsorption on COFs particles.
COF's have been used in membrane technology
for dye removal in a variety of methods. Interfacial
synthesis is a common approach for creating the
COF membrane. Dey et al. reported four kinds of
interracially crystallized COF (Tp-Bpy, Tp-Azo,
Tp-Ttba, and Tp-Tta) free-standing thin films.”®

Interfacial Crystalization

o | O
PTSA 552 = = —
(b)

(a) Graphical representation of the interfacial crystallized COF-Tp-Bpy for the selective separation of dyes”™ and (b) free-

Fig. 13.
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Among these COFs, Tp-Bpy COFs [Fig. 13(a)]
displayed dye rejection values as high as 94%, 80%,
97%, and 98% toward blue-G, congo red, acid
fuchsin, and rhodamine B, respectively. Water
permeance was measured to be as high as
211L m2h~!'bar~!. Zhang et al. employed
interfacial crystallization to make EB-COF:Br
nanosheets, which are a 2D cationic COF. Because
of the abundance of positive charge sites in its pore
walls, the EB-COF:Br membrane was able to reject
over 98% of anionic dyes (methyl orange, fluorescein
sodium salt, and potassium permanganate) while
maintaining a high water permeance
(546 L m~2 h~! bar~1).?” Wang’s group published a
work using Tp and Pa interfacial polymerization to
grow imine-type COFs directly on PSf substrates to
build composite membranes. The membrane dem-
onstrated a stable Congo red dye rejection of 99.5%
and a low water permeance of 50L m~2h~! bar~!
when it was constructed.'"’

Banerjee’s group demonstrated self-standing and
crystalline COF membranes using a simple process

Molecular

Seperation %

standing COF-Tp-BD. Taken with permission.** Copyrights 2017, VCH welly publishing group.
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of baking the molecular precursor [Fig. 13(b)].""!
The as-synthesized M-TpBD COF membranes
could reject rose Bengal to the tune of 99%, while
96% and 94% reflections under water performance
of around 120L m—2h~!bar~! were observed in
Congo red and methylene blue, respectively.
To prepare COF membrane free from defect, Pan
et al. demonstrated a modification of polyacryloni-
trile (PAN) porous substrate surface with ~-CHO
groups as nucleation sites, followed by depositing a
continuous imine-based COF layer [TpPa-1, syn-
thesized by Schiff-base reactions of 1,3,5-tri-
formylphloroglucinol (Tp) with p-phenylenediamine
(Pa-1)].'%2 Orange GII was rejected 94% of the time
by the TpPa-1/HPAN membrane, while Methyl
blue, Congo red, and Alcian blue were rejected over
99%. The TpPa-1/HPAN membrane rejected Or-
ange GII 94% of the time, while Methyl blue, Congo
red, and Alcian blue were rejected over 99%. Fan
et al. used an in situ solvothermal method to fab-
ricate continuous 2D imine-linked COF-LZU1
membranes, having 400 nm thickness on alumina
tubes. It displayed a water permeance of
760 L m~2 h~! bar~! MPa and a rejection rate of 90%
for dyes more than 1.2nm. Table 2 shows the OPs
taming performance of various COF-based materials.

Chemically and thermally, these membranes
were likewise stable.!'” COF-1 crystals were inser-
ted into GO membrane surfaces using an in situ
growth method developed by Zhang’s lab.''! Ex-
cellent dye rejection (> 99% for Congo red, Meth-
ylene blue, Reactive Black 5, and Direct red) was
achieved using a combination of COF-1’s physical
size sieving and an optimum interlayer spacing
between the GO sheets. Sun’s team used vacuum

filtering and hot pressing to insert COF-TpPa onto
GO membranes for dye removal in the same year.'!?

The fabricated membrane, HP-COF-TpPa/GO,
revealed significantly improved stability under uni-
versal pH conditions, with a water permeance of
166.8 L m 2 h~! bar~! and an effective dye rejection
rate of 97.05% for methylene blue. Ning et al.,'"
developed a salicylideneaniline-based chemo-selec-
tive COF (SA-COF) that underwent tautomer ex-
change in response to a solvent. When
tautomerization is used to modify the COF’s ionic
properties, the resulting SA-COF has a pore surface
functionality that may be tailored for size-, charge-,
and functionality-based molecular separation.

3.4. Taming of organic pollutants via
other materials

Although COF-based materials have been consid-
ered promising materials for OP taming, as dis-
cussed earlier. Apart from the COF-based materials,
other materials like MOF's and carbon-based mate-
rials are also acknowledged for OP taming.''® On
the other hand, metal-organic frameworks (MOFs)
are a suitable substrate to control OPs due to their
malleable pore topologies, high surface areas, and
thermal and chemical stability.!’> The key
mechanisms by which OPs interacted with MOF-
based materials were H-bonding, electrostatic at-
tention, pi—pi interaction, and surface complexa-
tion. The binding of OPs was influenced by porous
architectures, inner pore sizes, and surface
groups.''® Besides, the carbon-based materials, in-
cluding activated carbon, black carbon, carbon
nanotubes (CNTs), graphene oxide (GO), etc., have

Table 2. The adsorption performance of COF-based materials towards various Ops.

Adsorption
equilibration Adsorption capacity Adsorption
Materials Target time (min) (mg/g) mechanism References
TpBD-Me 2-COF Okadaic acid 60 min 279.0 Heterogeneous adsorption 103
COFs 2-Nitrophenol 90 min 239.9 p—p interaction; different size 104
values; surface complexation
COF-3 TPhP 12h 371.2 Hydrogen bonding; p—p 105
interaction; different size values
TPT-DMBD-COF MB 60 min 45.5 Electrostatic attraction; p—p 106
interaction
TPT-TAPB-COF RhB 90 min 970.0 Homogeneous adsorption 107
CuP-DMNDA-COF /Fe RhB 378.0 Surface complexation 108
Magnetic TPB-DMTP-COF Diclofenac 50 min 109.0 C-H interaction; p—p interaction 109
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Table 3. Comparison between the performance of COFs, MOFs, and carbon materials towards OPs taming.
Adsorption Adsorption

Materials Target capacity (mg/g) mechanism References

COF TpPa-1 BPA 1424.27 Hydrogen bonding and 7 inter 120
action, occupied in the pore cages

COF/GO RhB 368 Electrostatic interaction, H-bond, 121
m—7 interaction

COF/GO MB 328 Electrostatic interaction, H-bond, 122
m— interaction

CuP-DMNDA-COF/Fe RhB 378.0 surface complexation 108

Magnetic TPB-DMTP-COF Diclofenac 109.0 C-H interaction; 109
p—p interaction

MOF-MFC-N MB 128 Electrostatic and 123
p—p stacking interaction

MOF MFC-O MO 219 Electrostatic and p — p 123
stacking interaction

Active carbon Phenol 257 Electrostatic interaction, 124
H-bond, 7 interaction

Active carbon 2,4-Dichlorophenol 232.56 Electrostatic interaction, 125
H-bond, 7 interaction

Active carbon RB-2 0.27 7—7 interaction 126

Active carbon RB-4 0.24 7— interaction 126

Active carbon MB 180 m—T interaction 127

Mesoporous carbon CMK-3-100°C ~ Phenol 347 7—7 interaction 125

Mesoporous carbon CMK-3-130°C  Phenol 428 77 interaction 125

been widely utilized for OP taming.!'” Carbon
materials offer the diversity in physicochemical
interactions necessary to interact with OPs via
electrostatic, C—H bonding, pi—pi stacking, and hy-
drophobic forces.!'® However, on the basis of dif-
ferent nanostructures, sizes, pore sizes, volume,
surface area, and functionalities, carbon materials
also show variation in their performance towards
OP taming. Among various types of carbon mate-
rials, activated carbon materials have been widely
used as adsorbents for OPs.!'” However, the
adoptable strategy is a complex method with many
challenges to address. The difficulty is the result of a
large number of variables, including dispersive,
electrostatic, and chemical interactions, along with
the intrinsic properties of the solute (like solubility)
and the intrinsic properties of the adsorbent.
Table 3 shows a comparison between the perfor-
mance of COFs, MOFs, and carbon materials
towards OPs taming.

4. Conclusion and Future Prospects

Covalent organic frameworks (COFs) are con-
structed from the association of organic linkers
through covalent interactions, resulting in a highly

crystalline and porous organic 2D /3D architecture.
In turn, the existing documentation of multiple
fabrications and connection procedures contributes
to their synthesis with several valuable qualities and
their further usage in a wide range of applications.
This is because they occupy a precisely determined
location in 2D or 3D space, which agrees with the
planned and predetermined bonding of monomer
linkers. By utilizing post-synthetic modification or
conversion techniques, COF-based materials with
improved chemical and physical properties can be
fabricated. Because of their extraordinary surface
area, porosity, structural designability, low density,
crystallinity, biocompatibility, and chemical stabil-
ity, COFs are finding increasing use in a wide va-
riety of fields, such as energy conversion and
storage, electrocatalytic processes, photocatalysis,
organo-catalysis, adsorption, separation, sensing,
optoelectronic devices, and biomedicine. Focusing
on the construction and state-of-the-art progress
connected to the spectrum of environmental reme-
diation, this article analyzes the numerous reactions
and methods for the synthesis of 2D and 3D COF's
(i.e., removal of organic pollutants). There have
been substantial developments in COF-based
materials for the above applications, but there are
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still many challenges to be met. The following topics
warrant further investigation:

(i)

(i)

(iii)

A synthesis approach needs to be created so
that material architectures can be controlled
and the structure-property relationship can
be understood. It is well documented that
the ability to adsorb or desorb intermediates
and reactants will vary depending on the
architecture used. In a catalytic reaction, the
structure has a major impact on how well it
works. It is essential to develop synthesis
procedures to control the surface chemistry
of catalysts in order to study their reaction
mechanisms and make additional improve-
ments to their performance.

Knowing how structure affects physical
properties is crucial to grasping the nature of
chemical processes. When the structure of a
catalyst is altered, its physical properties,
such as its ability to distribute and transfer
electrons and ions, are affected. Incorporat-
ing physical features into the design of elec-
trocatalysis structures is only getting
started. Consequently, scientists need to zero
in on the materials themselves and come up
with new ideas for enhancing the reaction
mechanism.

It is vital to combine academic research with
the needs of manufacturing. Most current
studies concentrate on improving catalysis
performance by doping catalysts with het-
eroatoms or creating them in nanostructures.
Almost no research has focused on its po-
tential industrial applications. Making long-
lasting electrodes on a wide scale is the first
step in academic research and investigations
in the real world. Several novel methods,
such as roll-to-roll micro-gravure printing,
are needed to prepare usable industrial
electrodes.

Improving the materials quality, elucidating
the processes and ideal crystallization, and
developing strategies to use COFs at a
practical level, as free-standing films, and
other usable forms are all challenges that still
need to be overcome, despite the fact that
the COF area has been focused on expanding
the link between science and engineering and
pinpointing features of practical importance.
As a result, more fundamental considerations

requiring substantial attention due to the
modularity provided by COF design techni-
ques are urgently required.

Finally, the critical examination of the significance
of COF as multifunctional materials for usage in a
wide range of applications is presented in-depth,
along with the expected consequences and future
directions. To that end, this review paper will serve
as the first step in providing novel details on the
production of COF-based materials and their po-
tential applications in environmental, and engi-
neering fields.
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