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Abstract – The new and using an updated post-seismic damage 

assessment method, the residual deformations the damaged 

structure underwent during the earthquake are taken into 

consideration. Estimates of maximum deformations are made 

using both local and global residual deformations, as well as 

signs of damage that can be seen with the naked eye. The 

unique aspect of this technique is that it can account for both 

rotations and displacements at the same time. Uncertainties 

due to both stimulation and damage are directly considered. 

The resulting maximum displacements estimates can assist 

decide if the investigated structure is usable or repairable. 

Image preprocessing, feature extraction, and model training 

have received the bulk of attention as of late. Images are 

gathered in advance of an event and processed via 

preprocessing. For feature extraction, the proposed system 

used data on roof whole detection as well as on building 

height. CNN, BiGRU, and CNN-BiGRU models will be used 

to evaluate trainee progress. The suggested model 

outperforms several well-known alternatives, including CNN 

and BiGRU. 

 

 Keywords— Bidirectional Gated Recurrent Unit 

(BiGRU), Convolutional Neural Network (CNN), Building 

Damage Detection. 

I. INTRODUCTION 

 Assessing the condition of existing structures after 

major earthquakes can be challenging at best. Most 

structural evaluations are accomplished based on licensed 

engineers' visual inspections. It might be difficult to 

determine precisely where in a building harm has occurred 

because these evaluations can be time-consuming and 

subjective. While there is a limit to what may be seen 

during an inspection of a structure's performance, both 

destructive and nondestructive methods have been 

proposed as alternatives. Over the past two decades, 

researchers have increasingly turned to vibration 

measurements as one of many nondestructive post-

earthquake assessment methodologies to detect the location 

and extent of damage in buildings and bridges. It used a 

dataset of observed acceleration reactions for training, 

based on recordings of initial excitations. Damage to a five-

story steel frame building was evaluated using a neural 

network architecture and a shaking table simulation of the 

Kobe earthquake. An RC mansion with seven levels! 

Vibration recordings from testing on the UCSD-NEES 

shaking table were used to evaluate the structure's 

resilience under a range of simulated damage scenarios. 

Several crucial real-world uses rely on researchers being 

able to precisely determine the fundamental (or "natural") 

massively sized (civil) engineering structures, frequency, 

and their constituent parts. These include tuning/design of 

meta-structures, resonant vibration absorbers, and dynamic 

energy harvesters, as well designing structural components 

that are susceptible to resonance with outside loading 

frequencies. So, there is potential for development of novel 

approaches to the On-site measurements of natural 

frequencies in engineering structures that have already 

been created. To do this, operational modal analysis 

(OMA), a methodology is commonly utilized to collect 

response acceleration time-histories from structures 

subjected to unobserved operational/ambient low 

amplitude broadband excitations. Higher than past two 

decades, researchers have focused extensively on wireless 

sensors/accelerometers to meet the expected purpose 

within the OMA framework. This is due to the fact that they 

provide low-cost and quick-to-deploy field instruments. 

Damage to a building can be predicted using historical data 

on structures with similar characteristics. The height or 

number of stories of a building can be used as a rough 

estimate for the fundamental vibration period, which is one 

of the most popular criteria used to quantify global 

stiffness. Similarly, estimates of the lateral load-resisting 

system can be derived from the structure's plastic 

deformation process. What happens to a building in terms 

of velocity, acceleration, or displacement depends on the 

building's structural qualities and the nature of the 

earthquake input. Intensity measures (IM) that are derived 

from earthquake ground acceleration are particularly 

detrimental to short-period constructions. To accurately 

predict the damage condition of the remaining buildings 

under varying intensity measures, it is necessary to 

establish an archetype (parametric model) of the buildings 

Proceedings of the International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS 2023)
IEEE Xplore Part Number: CFP22DN7-ART; ISBN: 979-8-3503-0085-7

979-8-3503-0085-7/23/$31.00 ©2023 IEEE 56

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

el
f S

us
ta

in
ab

le
 A

rt
ifi

ci
al

 In
te

lli
ge

nc
e 

Sy
st

em
s (

IC
SS

AS
) |

 9
79

-8
-3

50
3-

00
85

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

SS
AS

57
91

8.
20

23
.1

03
31

89
4

Authorized licensed use limited to: Alliance College of Engineering and Design Bangalore. Downloaded on December 08,2023 at 06:20:42 UTC from IEEE Xplore.  Restrictions apply. 



constructed based on their main structural characteristics, 

and this can be done by selecting the best and minimum set 

of buildings as the reference. Damage detection is an 

important issue in civil and mechanical engineering. 

Damage is defined as any change in material qualities, 

boundary conditions, or system connection that degrades 

the system's performance. The existence, kind, location, 

and extent of damage must often be determined in order to 

provide an accurate assessment. There has been a lack of 

adequate protection against earthquakes and other seismic 

events in many precast (industrial) buildings already in 

existence, as was made clear by recent earthquakes in Italy. 

Such events can cause structural damage to buildings and, 

in the worst-case scenario, human casualties. In the 

proposed approach of an earthquake, an integrated 

structural monitoring system might be of tremendous 

assistance to existing buildings, particularly those made of 

precast concrete. 

 

II. LITERATURE SURVEY 

In order to better understand structural behavior 

and detect the presence/activation of potential damage 

mechanisms, structural health monitoring is becoming an 

increasingly important part of vulnerability assessments of 

historic (and cultural property) structures[1]. In the absence 

of empirically proved deterioration of the structural 

conditions, this knowledge helps to prevent the execution 

of intrusive repair procedures [2].After an earthquake, 

structural health monitoring (SHM) techniques and 

methodologies are used to assess the structural response of 

the monitored buildings to aftershocks, quantify the 

evolution of identified ongoing damage processes, evaluate 

the efficacy of provisional strengthening interventions, and 

act swiftly if an unsafe displacement pattern is recognized 

[3]. In this system,  focus on how to analyze and interpret 

SHM data using data-driven approaches to detect the 

presence of continuing damage processes[4]. One method 

used to deal with this problem [5]is to correlate retrieved 

features. Numerous damage detecting technologies have 

been developed over the past three decades methods have 

been created and studied for usage in order to discover 

long-term aging and degradation in civil engineering 

structures and structural components by monitoring 

changes to modal-based damage sensitive indices. 

Operational modal analysis (OMA) or output-only modal 

analysis [6] can be used to determine the modal properties 

of operating structures, including their fundamental 

frequencies, mode shapes, and damping ratios situations. In 

the aftermath of disastrous earthquakes, the condition 

evaluation a multistory building containing OMA 

equipment is constructed has been shown to benefit from 

the aforementioned structural damage detection approaches 

in recent years. Decision-makers in earthquake-prone areas 

[7] will be better positioned to guarantee the structural 

safety and integrity of buildings following an earthquake if 

they take this into account. Considering the brief duration 

of earthquakes, this is a plausible assumption to make, 

provided that pre- and post-earthquake environmental 

elements known The modal features are unaffected by 

temperature or humidity, which are known to have an 

effect.[8] Consider the modal strain energy (MSE) damage 

index, which compares the Both in its uninjured (before the 

earthquake) and damaged (after the earthquake) states, the 

structure's modal characteristics, to determine the location 

of earthquake damage in a single-bay, full-scale, three-

story steel frame building. Cutting through critical spots on 

the steel column sections' flanges to mimic the operation of 

a faux plastic hinge was used to simulate damage to the 

structure. to identify the long-term aging and degeneration 

of structural components and civil engineering structures, 

several damage detection techniques have been developed 

and explored in practice during the past three decades [9]. 

These methods keep an eye on damage-sensitive indices 

based on modal shifts. In contrast to the SDI and other 

legitimate damage indices [9], MC and MSE calculations 

do not require information about the building's Before 

and/or after a seismic event, it would not be possible to 

immediately obtain the mass distribution along its height. 

In health monitoring of beams and plates, modal strains  

have been proven to be sensitive and effective for damage 

localization [10]. Because of this, in this proposed system, 

frame buildings are evaluated as transversely vibrating 

structures throughout their height and as global lateral 

modes of vibration are found using traditional linear 

(operational) modal analysis. In addition, [11]used a 

miniature An illustration of a 38-story reinforced concrete 

(r/c) building that underwent seismic excitation from a 

shaking table to compare the ability To gauge earthquake-

related damage, the MSE and five other modal-based 

damage sensitive indices are used. However, even with 

automation, this sort of assessment can only catch the most 

glaring issues, so serious hidden flaws still have a chance 

of being missed.[12] Structural health monitoring (SHM) 

systems, whose primary objective is damage diagnosis, can 

be used to evaluate a building's safety after an earthquake. 

Damage diagnosis, as used here, include determining 

whether or not damage has occurred, pinpointing its exact 

location, and estimating its severity. Inverse [13]and data-

driven methods are the two most common ways. The 

system used outlier analysis to determine the degree to 

which a signal deviated from the norm, representing one of 

the earliest attempts at data-driven damage diagnosis. 

Different kernel-based damage detection methods were 

created, and their effectiveness was evaluated using 

experimental data. Clustering methods[14] and auto 

associative neural networks[15] were used for damage 

diagnosis and signal interpretation, respectively recordings. 

Currently, certified inspectors and structural engineers 

assess the impact of visible damage on critical structural 

components to ensure that a damaged building remains 

stable and maintains an adequate level of structural 

integrity. These professionals use guidelines provided by 

the Federal Emergency Management Agency (FEMA) and 

the Applied Technology Council (ATC).The earthquake 

that struck Port-au-Prince and the surrounding area on 

January 12, 2010 [16] destroyed more than 100,000 homes 

and damaged about 190,000.During qualitative structural 

inspections, damage is often classified into one of four 

categories. It grading the intensity of a structure as light, 

moderate, average, or heavy. Depending on the context, 

each of these phrases could judicial authority [17].This 

method focuses on spalling detection and property retrieval 

since it can indicate the remaining visible and non-visible 
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damage to RC structural sections, and the authors have 

previously been successful in crack identification and 

property retrieval [18].Due to its long history of reliability, 

the precast reinforced concrete method is frequently 

employed in the building of institutional and manufacturing 

facilities. Inadequate hyperstaticity and other weaknesses 

make many already-built precast structures unfit for use in 

seismic regions [19]. That's why it's so important to use 

methods of structural health evaluation to analyze their 

seismic activity and keep an eye on their dynamic 

properties over time. Since vibration-based continuous 

monitoring systems can reveal whether or not the structures 

have sustained permanent damage following an earthquake 

or are accumulating damage over the course of the 

sequence [20], they can be of great benefit to precast RC 

buildings during earthquakes. Model updating strategies 

rely[21] on physics-based models of structures that are 

calibrated using actual structure measurements in order to 

detect, localize, and quantify the damage from the 

deviations in the updated system parameters. 

 

III. PROPOSED SYSTEM 

Post-earthquake Damage Assessment of RC Buildings 

Guideline is based on the notion described ways to 

calculate damage ratings using the residual seismic 

capacity index R validity of these procedures through 

calibration with observed damage and the ratio of the 

starting capacity to the seismic capacity that is still 

available caused by the Hyogoken-Nambu (Kobe) 

earthquake are discussed in this proposed system, all in 

accordance Japanese Standard for Seismic Evaluation 

using RC Buildings. 

A. Image  Preprocessing 

All Landsat8 photos originated at the USGS Earth 

Resources Observation and Science Center [25], where 

adjustments were made for geography, atmospheric 

conditions, radiometric accuracy, and geometric precision. 

Radiometric normalization, in addition to the 

aforementioned adjustments, is a critical part of this 

process. It is well-known that variations exist between sets 

of multitemporal remote sensing data due to many factors, 

including spectral, thematic, geographical, and radiometric 

resolution, temporal constraints, vegetation growth, 

atmospheric conditions, and soil moisture conditions [22]. 

It is required to rule out or reduce the influence of various 

other factors in order to accurately define the impacts of 

landslides. 

To radiometrically normalize the Landsat-8 image 

collected prior to the occurrence, the image acquired after 

the quake was utilized as a reference. As there are some 

disturbances from land surface changes, the normalization 

coefficients were obtained by performing a robust linear 

regression between the bitemporal Landsat-8 images for 

each research region. The equation looks like this: 

 

                       𝑂𝑏𝑠𝑝𝑜𝑠𝑡,ℎ = 𝑏ℎ ∙ 𝑂𝑏𝑠𝑝𝑟𝑒,ℎ + 𝑎ℎ                     (1) 

 

where Observed Post-Earthquake Band Surface 

Reflectance 𝑂𝑏𝑠𝑝𝑜𝑠𝑡  and Observed Pre-Earthquake Band 

Surface Reflectance 𝑂𝑏𝑠𝑝𝑟𝑒  Landsat-8 photos, with the 

coefficients 𝑏ℎ and 𝑎ℎ arriving via robust linear regression. 

Cloudy and dark regions are left out of the linear 

regression. 

B. Feature Extraction 

The texture, geometric shape, color, and height of buildings 

are all distinguishing features in remote sensing photos. In 

order to interpret the damage class of a structure, one must 

first identify the most prominent image feature that can 

distinguish across damage classes. In this method, the 

proposed approach to employ a hybrid approach consisting 

of spectral and form features to categorize earthquake 

damage to buildings using height data from 3D point clouds 

and "roof-holes" spotted in UAV photographs. 

 

1) Information Regarding Building Heights: 

The UAV images are clearly advantageous for visual 

interpretation because of their great clear texture, spatial 

resolution, and many spatial characteristics. Due to the 

great resolution of the cameras, buildings in UAV 

photographs often display complex spectral information, 

resulting in the phenomenon of "the same object with 

different spectrum." Therefore, it is not enough to simply 

use spectral information from UAV photographs to 

categorize building damage. 

Extracting 3D point clouds of each building from its 

boundaries is the first step in calculating their heights. A 

3D model of each structure is reconstructed from the point 

clouds. After earthquakes, it was common practice to lower 

buildings to avoid further destruction [23]. The expansion 

or contraction of a city's skyline could be measured by 

calculating the mean and standard deviation of building 

heights. By examining the connection between these two 

variables, the system may predict the degree of damage to 

a building, such as complete collapse, partial collapse, or 

no collapse at all. Damage to buildings can be categorized 

in terms of their severity based on demographics such as 

mean and standard variation in building heights. 

 

2) Roof-Hole Detection: 

It is not possible to distinguish between slightly 

damaged and basically undamaged structures in the non-

collapsed buildings based on building height alone. 

Damaged structures can be identified by the presence of 

small holes in the roof. The "roof-hole" phenomena can be 

discovered using a model constructed on the hierarchical 

Dirichlet process called the Chinese restaurant (CRF). 

 

C. TRAINING THE MODEL: 

1) CONVOLUTIONAL NEURAL NETWORK 

By applying the convolution kernel to the input, the 

convolutional layer is able to derive the feature map. 

Multiple convolution kernels are equivalent to multiple 

feature extractors, whereas a single convolution kernel is 

equivalent to a single feature extractor. Multiple 

convolution kernels are used in feature extraction in general 

to improve the efficiency of using convolution kernels to 

extract features. The combination of 𝑤 convolution kernels 

is denoted by [𝑂1, 𝑂2, 𝑂3, … , 𝑂𝑤] where 𝑂𝑤  is the 𝑤 -th 

convolution kernel size, which is the size of the convolution 

kernel window. The word "vector" refers to the width of the 

window used in the convolution kernel. 𝑊  feature map 
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vectors will be approximately calculated using 𝑤 

convolution kernels. Given that the sentence data is a 𝑘 × 𝑙 
matrix, a convolution window of size h will result in a 

convolution kernel of size 𝑛 × 𝑙 . In order to make it 

possible to extract regional traits from text, the proposed 

system will first slide 𝑛 words according to Perform the 

convolution operation on the step length 𝑣  using the 

convolution kernel input word windows 

 𝑦1
𝑖 , 𝑦2

𝑖+1, 𝑦2
𝑖+2, … 𝑦𝑘−𝐼+1

𝑘  

 

Assuming that the input sentence's word vectors total n 

vectors 𝑦1, 𝑦2, … , 𝑦𝑘 , the convolutional layer's operation 

may be written as: 

 

                               𝑥ℎ = 𝑔(𝑍 ∙ 𝑦ℎ:ℎ+𝑖−1 + 𝑎)                       (2) 

 

where 𝑔() is the nonlinear function, 𝑍 is the weight matrix, 

 𝑎  is the bias vector, and  𝑖  is the dimension of the 

convolution kernel; 𝑦ℎ:ℎ+𝑖−1  is the combination of 

vectors 𝑦ℎ , 𝑦ℎ+1, … , 𝑦ℎ+𝑖−1; and is the tangent space. After 

extracting the kernel from a convolution, the system have 

an eigenvector y, which is 

 

                              𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘−𝑖+1                         (3) 

 

Each eigenvector is subjected to pooling processing by the 

pooling layer following the convolution operation, with the 

resultant multidimensional vector serving as a component 

of the pooled vector [24]. The pooling layer, which 

employs the most pooling, receives the output sequence 

from the convolutional layer algorithm. To generate a new 

vector y, the maximum pooling technique takes the largest 

element from the series 𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘−𝑖+1 

 

                                              𝑥 = max(𝑥ℎ)                            (4) 

 

2) BiGRU: 

The Gated Recurrent Unit (GRU) which is a form of RNN. 

It is proposed to overcome problems with long-term 

memory and gradients in back propagation in a manner 

analogous to that of LSTM. Recurrent neural networks 

(RNNs) are capable of performing recursion in an 

evolutionary direction because of their connected neural 

network design and the sequential data they receive as 

input. Thanks to cyclic variables in the hidden layer, 

neurons can learn about both their own past and the pasts 

of other neurons at the same time. 

The following formula can be used to determine the hidden 

layer unit A: 

                                   𝑤𝑣 = 𝜔(𝑍𝑤 ∙ [𝑖𝑣−1, 𝑦𝑣])                 (5) 

 

                                  𝑠𝑣 = 𝜔(𝑍𝑠 ∙ [𝑖𝑣−1, 𝑦𝑣])                         (6) 

 

                         𝑖̃𝑣 = tan 𝑖(𝑍 ∙ [𝑠𝑣 ∗ 𝑖𝑣−1, 𝑦𝑣])                      (7) 

 

                     𝑖𝑣 = (1 − 𝑤𝑣) ∗ 𝑖𝑣−1 + 𝑤𝑣 + 𝑖̃𝑣                     (8) 

 

where 𝑠𝑣  and 𝑤𝑣  represent the updating and reset gates, 

respectively; 𝜔 represents Sigmoid stands for the Sigmoid 

function; hyperbolic tangent function; and 𝑍𝑠, 𝑄𝑠, 𝑍𝑤, 𝑄𝑤 

and 𝑄  are matrices representing the training parameters. 

The current input 𝑦𝑣 , the prior output 𝑖𝑣−1  of the buried 

layer's neuron and the training parameter matrices 𝑍 and 𝑄 

all contribute is in the possible activation stage present 

time. BiGRU networks are better suited because of their 

ability to comprehend the connection between the current 

load and the variables affecting the past and future loads. 

To getting the load data's deep characteristics. The formula 

is as follows: 

                                 𝑥2 = 𝑓(𝑇𝐵2 + 𝑇′𝐵′2)                           (9) 

 

and 𝐵′2 can be worked out as 

 

                               𝐵2 = 𝑔(𝑍𝐵2 + 𝑄𝑦2)                            (10) 

 

                             𝐵′
2 = 𝑔(𝑍′𝐵′

3 + 𝑄𝑦2)                          (11) 

 

𝑟𝑣 , the value of the buried layer, is related to 𝑟𝑣−1 in the 

forward computation. The value of the buried layer, 

denoted by 𝑟𝑣 , is connected to 𝑟𝑣−1  in the inverse 

calculation. The combined results of the forward and 

backward calculations will determine the final result. The 

bidirectional recurrent neural network uses the following 

calculating method: 

𝑝𝑣 = 𝑓(𝑇𝑟𝑣 + 𝑇′𝑟′𝑣) 

 

                                𝑟𝑣 = 𝑔(𝑄𝑦𝑣 + 𝑍𝑟𝑣−1)                          (12) 

 

𝑟𝑣
′ = 𝑔(𝑄′𝑦𝑣 + 𝑍′𝑟𝑣−1′) 

 

3) Multihead AM: 

 The human brain has a unique system for processing 

visual data, known as the visual attention mechanism. The 

human visual system undertakes a quick global sweep to 

locate the attentional object during scene perception. After 

that point, more of the  brain's resources are dedicated there, 

helping  to focus on the details of the  task at hand while 

tuning out irrelevant information. Those with short 

attention spans might use this method to quickly zero in on 

the data that is most important to them. Over the course of 

human history, this protective mechanism evolved to 

ensure the survival of the species. The visual attention 

system in humans greatly improves the efficiency and 

accuracy with which visual information may be processed. 

The central scaled dot-product attention is a subset of 

the standard attention. The following formula can be used 

to get the scaled dot-product focus given matrices𝑈 ∈ 𝑆𝑘∗𝑐, 

𝑁 ∈ 𝑆𝑘∗𝑐 and  𝑇 ∈ 𝑆𝑘∗𝑐: 

 

                       𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑈, 𝑁, 𝑇) = (
𝑈𝑁𝑉

√𝐶
) 𝑇              (13) 

 

The hidden nodes of the neural network are denoted by 𝑐. 

Self-attention is the foundation of the multi-head attention 

process. Due to the nature of multi-head attention, 𝑈 =
𝑁 = 𝑇in the diagram represents the self-attention process. 

By using data from the current place with data from all 

previous positions, the proposed system can more 

accurately capture dependencies over the entire process. 

For example, each word in a sentence must go through the 

attention process computation. 
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In this method, multihead attention is utilized to perform a 

linear transformation on the three vectors 𝑈, 𝑁, 𝑇  before 

they are incorporated into the calculations. Due to the use 

of "multihead attention," the computation scaled dot-

product attention component must be repeated numerous 

times. Each calculation will provide a different linear 

projection of  𝑈, 𝑁, 𝑇; this is represented by the "heads" 

count. As an example, consider the ℎ-th brain: 

 

𝑈′ = 𝑈 ∗ 𝑍ℎ
𝑈 

 

                                           𝑁′ = 𝑁 ∗ 𝑍ℎ
𝑁                               (14) 

 

𝑇′ = 𝑇 ∗ 𝑍ℎ
𝑇 

Since this layer is where the BI-GRU's output is fed, 

 

                                    𝑈 = 𝑁 = 𝑇 = 𝑥𝑣                               (15) 

 

The conclusion reached by this brain is 

 

                 𝐿ℎ = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑈′𝑁′𝑉

√𝑐
) 𝑇′                            (16) 

 

IV. RESULT AND DISCUSSION 

Accurate estimates of the residual behavior of damaged 

buildings facilitate the quantitative assessment of structural 

performance following natural disasters. An accurate 

estimate of the damage amount and distribution is 

necessary for predicting the residual behavior of 

earthquake-damaged structures. 

 

 

Fig. 1. Loss Value Curve of the Proposed Model 

 

Meanwhile, after 100 epochs of training, the model 

converged, as can be seen in Figure 1. The model was 

trained using the SGD optimizer and a weight decay of 

0.01, and validated using the cross-entropy loss function. 

 

 

 

Fig. 2. Explained variance ratio of CNN-BiGRU 

Figure 2 displays the explained variance ratios for these 

models after CNN-BiGRU is conducted after min-max 

normalization. For the CNN, BiGRU, and CNN-BiGRU, 

the bare minimum number of principal components 

necessary to achieve an 80% explained variance ratio is 3, 

3, and 2, respectively. 

 

 

Fig. 3. Training and Validation Loss of CNN-BiGRU 

While there are only a small number of datasets that include 

information about major earthquakes, CNN-BiGRU's 

strength in learning complex data makes it possible to 

discover patterns from these datasets. Figure 3 shows the 

fitting curves for our models; all of them are well Training 

and validation because the proposed system employ the 

dropout function. 

 

V. CONCLUSION 

Rebuilding a city after an earthquake requires careful 

planning to restore normalcy as quickly as feasible. After a 

major earthquake hits a town, it is critical that damage 

inspections be conducted as soon as possible to determine 

whether buildings may be safely occupied. Guidelines for 

Post-Earthquake Damage Evaluation and Rehabilitation 

uses their method for assessing the residual seismic 

capacity of earthquake-damaged reinforced concrete 

buildings. However, the data obtained from such 

assessments is bound to be approximate due to their rapid 
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nature. After the initial inspections, a more in-depth and 

quantitative assessment of the damage must be performed. 

To decide what has to be done in a damaged building, 

engineers require a technical guideline. While modern 

algorithms such as CNN and BiGRU have their uses, they 

also have their drawbacks. To begin, the sequential nature 

of these algorithms' inputs makes model training a lengthy 

process. To solve these problems, a new CNN-BiGRU-

based prediction approach has been created. In terms of 

accuracy (97.85 percent), the proposed model is superior to 

both the CNN and BiGRU alternatives. 
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