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a b s t r a c t 

The goal of this research is to develop a model employing deep neural networks (DNNs) to predict 

the effectiveness of mangrove forests in attenuating the impact of tsunami waves. The dataset for 

the DNN model is obtained by simulating tsunami wave attenuation using the Boussinesq model 

with a staggered grid approximation. The Boussinesq model for wave attenuation is validated 

using laboratory experiments exhibiting a mean absolute error (MAE) ranging from 0.003 to 

0.01. We employ over 40,000 data points generated from the Boussinesq numerical simulations 

to train the DNN. Efforts are made to optimize hyperparameters and determine the neural network 

architecture to attain optimal performance during the training process. The prediction results of 

the DNN model exhibit a coefficient of determination ( R2 ) of 0.99560, an MAE of 0.00118, a root 

mean squared error (RMSE) of 0.00151, and a mean absolute percentage error (MAPE) of 3 %. 

When comparing the DNN model with three alternative machine learning models — support vector 

regression (SVR), multiple linear regression (MLR), and extreme gradient boosting (XGBoost) —

the performance of DNN is superior to that of SVR and MLR, but it is similar to XGBoost. 

• High-accuracy DNN models require hyperparameter optimization and neural network archi- 

tecture selection. 

• The error of DNN models in predicting the attenuation of tsunami waves by mangrove forests 

is less than 3 %. 

• DNN can serve as an alternate predictive model to empirical formulas or classical numerical 

models. 
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Specifications table 

Subject area: Engineering 

More specific subject area: Coastal Engineering 

Name of your method: DNN for Wave Attenuation Prediction 

Name and reference of original method: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural 

networks.’’ Advances in neural information processing systems 25 (2012). 

Resource availability: The script in Python is available on GitHub: 

https://github.com/diditadytia/DNN- based- prediction- of- tsunami- wave- attenuation- by- mangrove- forests.git 

Background 

Tsunamis, representing catastrophic marine events with the potential for profound damage to regions in their trajectory, arise from

diverse triggers such as earthquakes, submarine volcanoes, submarine landslides, and meteorite impacts [ 1 ]. In addition to causing

significant damage to the areas they traverse, tsunamis pose a formidable threat to human lives, particularly for coastal residents.

Addressing these challenges requires approaches to mitigate the impact of tsunamis. Local authorities can implement mitigative 

measures such as constructing breakwaters and sea walls. However, these strategies entail significant costs and carry the risk of

adverse impacts on the natural environment [ 2 , 3 ]. As part of coastal ecosystems, Mangrove forests present viable alternatives for

wave attenuation, given their natural capacity to act as barriers that reduce the energy of tsunami-induced waves [ 2 , 4 ]. Additionally,

mangrove forests contribute to preserving the natural habitat in coastal areas [ 3 ]. Nevertheless, additional research is required to

thoroughly examine the efficacy of mangrove forests in wave attenuation, particularly in the context of reducing tsunami-induced 

wave energy. 

Evaluating the efficacy of mangrove forests in attenuating tsunami waves can be approached through empirical and numerical 

models. Wu and Cox [ 5 ] performed a physical model experiment to explore the impact of wave steepness and relative water depth

on the attenuation of waves by emergent vegetation. Mendez and Losada [ 6 ] utilized an empirical model to assess the propagation

of both breaking and nonbreaking waves over fields of vegetation. Huang et al. [ 7 ] conducted laboratory experiments and used the

Boussinesq numerical model to examine how solitary waves interact with emergent, rigid vegetation. Maza et al. [ 8 ] researched the

interactions between tsunami waves and mangrove forests, employing a three-dimensional numerical methodology. Adytia et al. [ 2 ] 

utilized a non-dispersive wave model, a numerical approach, to investigate the dissipation of solitary waves attributed to mangrove

forests. Other studies on wave attenuation by vegetation using numerical models were also conducted by Abdolali et al. [ 9 ], Lee et al.

[ 10 ] and Limura and Tanaka [ 11 ]. 

However, both empirical and numerical models have limitations that restrict their efficacy when employed. Empirical models re- 

quire high costs, while numerical models require high computation time. Recent advancements in computer science and AI technology 

provide a groundbreaking avenue for developing models to address coastal challenges through machine learning. Implementing this 

approach not only reduces computational expenses but also accelerates forecasting, leading to a methodology with improved effi- 

ciency and accuracy. Using machine learning combined with hydraulic expressions, Kim et al. [ 12 ] studied wave attenuation in coral

reefs. The prediction of the attenuation of solitary waves by emerging vegetation was investigated by Gong et al. [ 4 ] using genetic

algorithm and artificial neural networks. Other studies that used machine learning to solve marine problems were conducted by Yao

et al. [ 1 ] and Dharmawan et al. [ 13 ]. 

In this paper, a deep learning model, namely a Deep Neural Network, is developed to predict tsunami wave attenuation by

mangrove forests. To construct the Deep Neural Network, we generate simulation data from a wave model, Staggered grid Variational

Boussinesq (SVB), validated with the experimental data. This paper marks progress beyond the study of Malvin et al. [ 3 ], which

focused on employing neural network models to analyze the dissipation of waves caused by mangrove forests. 

Method details 

Wave model 

We use numerical simulations employing the two-profile Variational Boussinesq Model (VBM) wave model proposed in [ 14 ] to

generate training datasets for deep learning models intended to predict tsunami wave attenuation. The wave model is given by 

𝜕𝑡 η = −𝜕𝑥 ( ℎ𝑢 ) − 𝜕𝑥 
(
β( 1) 𝜕𝑥 𝜓 ( 1) ) − 𝜕𝑥 

(
β( 2) 𝜕𝑥 𝜓 ( 2) ) (1) 

𝜕𝑡 𝑢 = − 𝑔𝜕𝑥 𝜂 − 𝑢𝜕𝑥 𝑢 −𝑅𝐵 , (2) 

where 𝜂(𝑥, 𝑡 ) is free surface elevation, 𝑢 (𝑥, 𝑡 ) is horizontal velocity, 𝑔 is gravity acceleration, ℎ = η + 𝑑 is total water depth, 𝑑(𝑥, 𝑡 ) is
bathymetry, 𝑅𝐵 = 𝐶𝑓 𝑢 |𝑢 |∕ℎ is the bottom dissipation term, 𝐶𝑓 = 𝑛2 𝑔∕ℎ1∕3 is the coefficient of bottom dissipation, and 𝑛 is Manning’s

coefficient. The horizontal dependent function 𝜓 ( 𝑚 ) is obtained by solving the following elliptic system: 

−𝜕𝑥 
( [ 

𝛼( 11 ) 𝛼( 12 ) 

𝛼( 21 ) 𝛼( 22 ) 

] [ 
𝜕𝑥 𝜓

( 1) 

𝜕𝑥 𝜓
( 2) 

] ) 

+ 𝜕𝑥 

( [ 
𝛾 ( 11 ) 𝛾 ( 12 ) 

𝛾 ( 21 ) 𝛾 ( 22 ) 

] [ 
𝜓 ( 1) 

𝜓 ( 2) 

] ) 

=
[ 
𝜕𝑥 
(
𝛽( 1) 𝑢 

)
𝜕𝑥 
(
𝛽( 2) 𝑢 

)] , (3) 

where 

α( 𝑖𝑗 ) = ∫
η
𝐹 ( 𝑖) 𝐹𝑗 𝑑 𝑧, β( 𝑗) = ∫

η
𝐹 ( 𝑗) 𝑑 𝑧, γ( 𝑖𝑗 ) = ∫

η (
𝜕𝑧 𝐹

( 𝑖) )(𝜕𝑧 𝐹 ( 𝑗) )𝑑 𝑧. (4) 

− 𝑑 − 𝑑 − 𝑑 
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Here, 𝐹 ( 𝑚 ) denotes vertical profile function and is given by 

𝑭 ( 𝒎 ) ( 𝒛 ; 𝜼,𝒅 ) =
cosh 

(
𝜿𝒎 ( 𝒛 + 𝒅 ) 

)
cosh 

(
𝜿𝒎 𝒉 

) − 1 (5) 

The wave number 𝜿𝒎 is determined a priori by the process of kinetic energy minimization. 

The wave model in Eqs. (1) - (4) are solved numerically using staggered grid discretization. In the staggered grid implementation,

we use two types of grid, i.e., the full-grid, in which parameters such as 𝜂, ℎ , and 𝜓 are discretized in 𝑥𝑖 , with 𝑥 ∈ [0 , 𝐿 ] , whereas

the other grid called the half-grid, in which parameter such as 𝑢 is discretized in 𝑥𝑖 +1∕2 , with 𝑖 = 1 , 2 , … , 𝑁 . By substituting these

discretizations, Eqs. (1) - (4) are transformed into system of matrix. Details of numerical implementation procedures can be found

in [ 14 ] and [ 15 ]. The numerical scheme is called SVB (Staggered grid Variational Boussinessq). The SVB numerical scheme has

been extensively employed in various wave modeling applications, as described in [ 15–17 ]. By using the SVB numerical scheme, we

conduct a numerical simulation of tsunami wave attenuation. 

Validation of the wave model with laboratory experiments 

Several standard tests were used to prove the SVB wave model [ 14 ]. These included wave run-up, shock-induced dam break,

propagation of dispersive and nonlinear broadband waves on a flat seabed, propagation of regular waves breaking over a submerged

trapezoidal bar, propagation of cnoidal waves on a flat beach, and propagation of irregular or random waves on a barred beach. The

results of the SVB model showed high agreement with the analytical solutions and measurement data. In this work, the capability

of the wave model to simulate the attenuation of tsunami waves by mangrove forests is validated. The validation is conducted using

experimental data obtained from [ 18 ]. In [ 18 ], the experiments were conducted in a twin flume wave tank; which consist of a 1 m

wide flume for non-mangrove experiments, and the other 2 m wide flume for mangrove experiments. The scale of the experiment

is 1:25 with bathymetry consisting of deep, shallow, and sloping areas. They conducted experiments with many variants of wave

influxes such as solitary, regular and irregular waves. To describe real world situations, here the mangroves are parameterized using

vertical bars. Details of the physical experiment are desribed in [ 18 ]. Fig. 1 illustrates the experimental design for tsunami wave

attenuation by mangrove forests. 

The physical parameters utilized for the tsunami wave attenuation simulation were as follows: water depth h0 = 0.615 m, beach

slope 1/20, forest length B = 3 m, and incident wave amplitude 0.2 m. The mangrove forest has a Manning roughness coefficient of

0.13. The computational domain of this simulation is [0, 80 m] with spatial discretization Δx = 0.1 m and temporal step Δt = 0.02.

The simulation is conducted for a maximum time of 90 s. Fig. 2 displays the simulation results for tsunami wave attenuation, including

the maximum temporary amplitude up to t = 75 s. The figure shows a decrease in wave amplitude from 0.2 m to 0.13 m, indicating
a wave attenuation of 35 %. 

Fig. 1. Experimental set-up of tsunami wave attenuation by mangrove forests. 

Fig. 2. Simulation results of tsunami wave attenuation with maximum temporary amplitude until t = 75 s. 

3
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Fig. 3. Comparisons of time series of the free-surface elevation between the SVB [ 14 ] and experimental data [ 18 ] at several wave gauge locations: 

(a) WG8, (b) WG9, (c) WG13, (d) WG18. 

Table 1 

SVB model accuracy at several wave gauge locations. 

Wave gauge location Statistical Measure 

MAE RMSE 

WG1 0.01110 0.03330 

WG8 0.00346 0.00742 

WG9 0.00369 0.01033 

WG13 0.00491 0.01270 

WG18 0.00343 0.00922 

 

 

 

 

 

 

 

 

Fig. 3 displays a comparison of the time series of the free surface elevation between the numeric and the experimental data at

various wave gauge locations. The figure clearly demonstrates a strong agreement between the numerical results and the experimental

data. To quantify this comparison, the MAE and RMSE were computed for the results obtained at WG1, WG8, WG9, WG13, and WG18.

The error values are provided in Table 1 . The MAE and RMSE for SVB range from 0.003 to 0.01 and 0.007 to 0.03, respectively.

These findings suggest that the SVB model accurately simulates tsunami wave attenuation by mangrove forests. 

Deep neural networks 

Deep neural networks (DNNs) are a subset of artificial neural networks (ANNs). The key distinction between Deep Neural Networks

(DNNs) and Artificial Neural Networks (ANNs) is the presence of multiple hidden layers between the input and output layers. These

hidden layers allow the neural network to apprehend the complex and nonlinear patterns inherent in the dataset. In a DNN, neurons

within a layer are interconnected with neurons in neighboring layers. Components of the deep neural network used in this study are

shown in Fig. 4 . The explanation of each component is as follows. 
4
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Fig. 4. Deep neural network architecture. 

 

 

 

 

 

 

 

 

 

 

 

1. Input Layer: The input layer comprises neurons that capture the features of the raw input data. 

2. Hidden Layers: Hidden layers are intermediary layers positioned between the input layer and the output layer. Deep learning

involves the use of multiple hidden layers, each of which contains a varying number of neurons. 

3. Weights and Biases: The connection between neurons in adjacent layers is established through a weight, which represents the 

strength of the connection. Every neuron possesses a corresponding bias that enables it to detect patterns that may be unrelated

to the input data. 

4. Activation Functions: Inputs received by the neurons in each layer undergo multiplication with their corresponding weights and 

subsequent summation. The sum is subsequently fed into an activation function to generate the modified output. Widely used 

activation functions include sigmoid, tanh, and ReLU, which stand for rectified linear units. 

5. Output Layer: The output layer represents the ultimate result produced by the neural network. In regression models, the output

layer typically comprises a single neuron. 

The deep neural network consists of several processes, which are outlined below. 

1. Feedforward Propagation: Feedforward propagation is the process of feeding input data into a neural network so that it produces

a prediction or output. The mathematical formulation of feedforward propagation for an individual neuron inside a layer can be

represented as follows: 

𝑧 =
𝑛 ∑
𝑖 =1 

𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏, (6) 

𝑎 = σ( 𝑧) , (7) 

where 𝑤𝑖 is weights, 𝑥𝑖 is input variables, 𝑏 is the bias term, 𝜎 is the activation function. Here, 𝑎 is activation, which will be the

input for the next layer. 

2. Backpropagation: Backpropagation is a learning process used to train the DNN model. By means of this process, the model can

adjust its weights and biases to minimize the discrepancy between the predicted output (the result of the forward propagation)

and the actual value. 

3. Loss function: A loss function is used to determine the magnitude of the predicted output and the actual value. 

4. Training: The neural network is trained through an iterative process using optimization algorithms, such as stochastic gradient 

descent (SGD) [ 19 ]. One variant of the SGD algorithm is Adaptive Moment Estimation (Adam), while the other is Root Mean

Square Propagation (RMSprop). One of the hyperparameters that needs to be optimized related to the SGD algorithm is the

learning rate. 

5. Evaluation: Once the network has completed its training process, its generalization capability is assessed by evaluating its per- 

formance using a separate test dataset. Further elaboration on DNN is available in reference [ 20 ]. 

DNN method for predicting tsunami wave attenuation 

The DNN method and its application in predicting the attenuation of tsunami waves will be elaborated upon in this section.

With the exception of a few phases that require particular attention, the methodology employed for predicting other challenges 
5
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Fig. 5. Deep neural network modeling process for predicting tsunami wave attenuation. 
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is substantially identical for the most part. The complete methodology of the deep neural network for predicting tsunami wave

attenuation is described in Fig. 5 . 

The step-by-step process can be explained as follows: 

1. Using the physical parameters from laboratory experiments, we perform numerical simulations using the staggered variational 

Boussinesq (SVB) wave model. 

2. The simulation is conducted by varying the physical parameters, including the amplitude (WG1) and length (lambda) of the 

incident wave, water depth ( h0 ), water depth within the forests ( h1 ), beach slope, and forest length ( B ). The output of this

simulation is the wave amplitude after passing through the forests (WG18). 

3. The result of this simulation is raw data that will be utilized as the training data for the deep neural network. The raw data of

this study consists of 43,032 entries with 7 features. 

4. Exploratory data analysis involves utilizing data visualization techniques to observe and understand the patterns and character- 

istics of the data. Data preparation is conducted to eliminate outliers and incomplete data. 

5. The dataset is subsequently split into three distinct groups: training data, validation data, and test data. The ratio of training data

to test data is 70 % to 30 %. Furthermore, 10 % of the training data is specifically allocated for the validation test. 

6. Before starting the DNN model training, we must first determine the DNN architecture, select the optimizer, and perform hyper-

parameter tuning. 

7. By employing the training data, the deep neural network (DNN) model is trained iteratively until the maximum epoch is reached.

8. By utilizing validation data, we compute the mean absolute error of the DNN model. The computed error must be consistent with

the error from the training data, or else overfitting may occur. 

9. Upon reaching the maximum epoch, the trained DNN model is obtained. 

0. We reassess the training outcomes to determine if they meet our criteria. If the level of accuracy remains insufficient, we will

proceed with another round of DNN optimization. 

1. Once the trained DNN model attains a satisfactory level of accuracy, we proceed to evaluate its performance using test data. At

this point, we employ statistical metrics to quantify the performance of the model. 
2. The predicted results of the DNN model are compared to those of alternative machine learning models. 

6
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Two main simulation tools are used in this research, i.e., the simulation tool for the numerical wave simulation and for performing

machine learning modelling. For the numerical wave simulation, we implemented the SVB model using a staggered grid scheme in

Python language, with details of the SVB’s numerical scheme can be found in [ 14 ]. For the machine learning modelling by using

DNN, we use well-established KERAS package, which is part of Tensorflow. Both simulation tools are run on a PC with an i9 intel

processor 11th generation, with 16 GB RAM and Nvidia GPU GeForce RTX3060. For validation of the numerical wave simulation

using the SVB model, we use the physical experimental wave data that are taken from [ 18 ]. 

Method validation 

In this section, the deep neural network model to predict tsunami wave attenuation by mangrove forests is validated and discussed.

However, we conducted exploratory data analysis and parameter optimization beforehand. To quantify the performance of the DNN 

model in predicting tsunami wave attenuation, we employ the following metrics: coefficient of determination ( R2 ), absolute error 

(MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). 

Exploratory data analysis 

We will conduct exploratory data analysis as a preliminary step in constructing a deep learning model. Exploratory Data Analysis

(EDA) is undertaken to extract descriptive information and identify patterns from a dataset using visual representation. The SVB wave

model generated 43,032 data used for the deep learning process in this work. The dataset has the following features: WG1 represents

the incident wave amplitude measured at wave gauge location 1. h0 refers to the initial water depth. In contrast, the water depth in

the mangrove forest is represented by h1 . Lambda denotes the wavelength of the incident wave, and slope indicates the beach slope.

B represents the length of the forests. Lastly, WG18 represents the amplitude of the wave after it passes through the mangrove forest,

as measured at wave gauge location 18. The variable to be predicted is WG18. Fig. 6 displays the statistical distribution of these

variables. 

The statistical description of the tsunami wave attenuation dataset is presented in Table 2 . The table indicates that the incident

wave has an amplitude ranging from 0.04 to 0.24 m and a wavelength between 2.1 and 3 m. The water depth h0 is visible between

the values of 0.4 and 0.7 m. The beach slope within the dataset varies from 1/60 to 1/14. The forest length achieved effectively

ranges from 1.2 to 14.3 m, resulting in an average wave height of 0.04 m at WG18. 

Fig. 7 shows the effect of input variables such as the amplitude of the incident wave, water depth, slope, and length of forest on

the wave amplitude at WG18, which is the wave after passing through the mangrove forest. It can be seen that when the incident

wave increases by 0.05, the wave height at WG18 increases by about 0.02. In addition, the water depth h0 positively affects the wave

height after passing through the forest. The deeper the water, the higher the wave height. For a beach slope smaller than 1/20, the

amplitude increases when the beach is steeper, while when the slope is greater than 1/20, the amplitude decreases when the beach

is steeper. The length of the forest significantly affects the height of the wave after passing through the forest. The longer the forest,

the shorter the amplitude of the tsunami wave. 

Fig. 8 describes the correlation heat map among variables in the dataset. In the figure, darker colors indicate a stronger correlation,

while lighter colors indicate a weaker correlation. A negative correlation coefficient means an opposite relationship between two 

variables. With a correlation coefficient of 0.65, the input variable forest length strongly influences the wave height after passing

through the forests. Furthermore, the water depth h1 is the second strongest after the forest’s length to influence the wave attenuation.

Amplitude and incident wavelength, with correlation coefficients of 0.44 and 0.45, respectively, moderately influence the wave 

amplitude at WG18. The beach slope correlates most weakly with wave attenuation due to its negative influence on small slopes and

positive influence on bigger slopes. 

Deep neural network optimization and implementation 

In this study, we implement a deep neural network algorithm by addressing the optimization method to obtain accurate prediction

results. The optimization of deep neural networks involves four main sections: data preprocessing, architectural design, optimizer 

selection, and hyperparameter tuning [ 21 ]. We select two specific areas for optimization: architecture and hyperparameters. The 

parameters to be optimized are listed in Table 3 . The optimization involves selecting the number of layers in a neural network design,
Table 2 

Statistical description of tsunami wave attenuation dataset. 

parameters mean std min 25 % 50 % 75 % max 

WG1 0.149171 0.06732 0.040927 0.066395 0.164919 0.209439 0.239227 

h0 0.551829 0.086985 0.418571 0.464695 0.555817 0.634688 0.698436 

h1 0.201939 0.05959 0.116764 0.148338 0.190108 0.256050 0.294119 

Lambda 2.635640 0.226209 2.125437 2.457077 2.666356 2.825603 3.050858 

Slope 0.042004 0.011392 0.016315 0.034585 0.041096 0.049222 0.069525 

B 7.572313 3.790363 1.203618 4.453153 7.175663 10.90263 14.29066 

WG18 0.045310 0.022906 0.008191 0.027411 0.040469 0.059382 0.107361 

7
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Fig. 6. Data distributions of the input and output variables. 

Table 3 

Parameters for DNN optimization. 

Parameters Section Search range Data type Optimal value 

Number of hidden layers Architecture [2,3] Integer 3 

Number of neurons Architecture [6,16] Integer 10 

Learning rates Hyperparameter [10− 9 ,10− 1 ] Real 10− 3 

Number of epochs Hyperparameter [50,300] Integer 80 

 

 

 

 

 

which can be either two or three, and determining the number of neurons in each hidden layer, which is within the range of 6

to 16. The DNN architecture, depicted in Fig. 4 , consists of three hidden layers, each encompassing six neurons. We will examine

the two main hyperparameters in DNN optimization: learning rates and number of epochs. The search intervals for learning rates

and the number of epochs are [ 10 − 9 , 10 − 1 ] and [50,300] respectively. DNN optimization involves selecting from several kinds of

optimizer alternatives. Commonly employed optimizers in deep learning encompass SGD, Adagrad, RMSProp, and Adam. The SGD 

optimizer is straightforward to implement, but it lacks the ability to dynamically adjust the learning rate during the training process.
8
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Fig. 7. Effect of several input variables on the wave amplitude after passing the forest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The adaptability of the learning rate in Adagrad can lead to premature convergence. RMSProp enhances the Adagrad algorithm by

incorporating a moving average of the squared gradient. RMSProp is more resilient for all categories of neural networks. In addition,

the Adam optimizer integrates the advantages of both RMSProp and momentum optimization. In our case, we utilize the Adaptive

Moment Estimation (Adam) optimizer. 

The parameters listed in Table 3 were optimized using the grid search approach. Fig. 9 displays the mean absolute error (MAE)

of the DNN model as it relates to the number of neurons for both two and three hidden layers. The model with three hidden layers

generally exhibits a lower MAE compared to the model with two hidden layers. Further, the MAE for three hidden layers is achieved

with ten neurons. The variation of MAE against learning rate is shown in Fig. 10 . It can be seen that learning rates of 0.001 and 0.01

give the smallest MAE, but we chose a learning rate of 0.001 in DNN implementation. Furthermore, the variation of MAE against the

number of epochs is shown in Fig. 11 . The optimization findings indicate that the minimum mean absolute error (MAE) is achieved

when the epoch value is set to 80. Any epoch value larger than 80 does not lead to a further reduction in the MAE. Table 3 also

displays the optimal parameter values obtained from the grid search optimization. 

The DNN method was executed using the optimal parameters specified in Table 3 . The dataset, comprising 43,032 entries and 7

features, is divided into two distinct categories: 70 % of the data is designated for training purposes, while the remaining 30 % is

labeled for testing the DNN model. Tables 4 and 5 display the first 10 data from the training and test data, respectively. The Rectified

Linear Unit (ReLU) was employed as the activation function in the DNN algorithm. The remaining parameters use default values from

the deep learning library. 
9
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Fig. 8. Correlation heat map among variables. 

Fig. 9. Variation in MAE with the number of neurons for two and three hidden layers using test data. 

Table 4 

Training data for DNN. 

WG1 h0 h1 Lambda Slope B WG18 

0.204239 0.685815 0.280011 2.980033 0.048716 8.544877 0.065217 

0.209439 0.592699 0.291433 2.837336 0.036166 11.65861 0.055711 

0.128536 0.463655 0.145795 2.428328 0.038158 2.815606 0.056856 

0.066395 0.562259 0.148338 2.487232 0.04969 7.175663 0.026206 

0.065714 0.671338 0.294119 2.691886 0.045284 7.729143 0.040270 

0.128536 0.555817 0.230816 2.605072 0.039016 6.897647 0.052249 

0.209439 0.671338 0.292978 2.966591 0.045421 2.134128 0.099076 

0.155042 0.429896 0.167544 2.423917 0.031495 3.158108 0.062216 

0.228410 0.429896 0.280011 2.599157 0.017993 11.86824 0.050122 

0.186753 0.661472 0.291433 2.906958 0.044422 1.240857 0.095644 

10
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Fig. 10. Variation in MAE with learning rate. 

Fig. 11. Variation in the MAE with the number of epochs. 

Table 5 

Test data for DNN. 

WG1 h0 h1 Lambda Slope B WG18 

0.065714 0.643236 0.184352 2.640315 0.055088 10.81116 0.025160 

0.066395 0.470172 0.197851 2.299286 0.032692 3.442609 0.044431 

0.155042 0.429896 0.180782 2.423917 0.029906 11.86824 0.026066 

0.204239 0.540180 0.119291 2.737177 0.050527 7.686781 0.023294 

0.239227 0.453972 0.24963 2.666356 0.024531 12.90569 0.041641 

0.205163 0.573560 0.237843 2.796294 0.040302 8.063806 0.059273 

0.128536 0.585647 0.152594 2.659947 0.051987 5.751071 0.039770 

0.086956 0.562259 0.197851 2.530174 0.043747 9.999896 0.031145 

0.086956 0.698436 0.180782 2.780512 0.062143 6.000906 0.040604 

0.239227 0.508365 0.152594 2.758616 0.042710 2.815606 0.067828 

 

 

 

 

 

 

 

 

Deep neural network validation 

The evaluation of the deep neural network model in predicting wave attenuation is conducted by utilizing validation and test

datasets. The comparison between the predicted and observed results is shown in Fig. 12 . By employing the validation data, it was

found that the DNN model exhibits an excellent degree of accuracy in its predicting capabilities (MAE = 0.00113, R2 = 0.99595).

The obtained results closely match the level of accuracy that the DNN model attained while using the training data. The efficacy of

the DNN model was evaluated using a separate set of test data, which was not utilized during the model training process. As shown

in Fig. 12 (c), the DNN model has a coefficient of determination of 0.99560 and an error of 0.00118. When all the SVB-generated

data is used, the accuracy of the model remains consistent with the evaluation results obtained from the validation and test data, as

illustrated in Fig. 12 (d). The findings of this research provide evidence supporting the enhanced predictive capabilities of the deep

neural network model in estimating wave amplitude after passing through forests. 
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Fig. 12. Comparison of amplitude at WG18 between observed and predicted: (a) training data, (b) validation data, (c) test data, (d) overall data. 

 

 

 

 

 

 

 

 

The predictions made by the DNN model and those made by alternative machine learning models — multiple linear regression 

(MLR), support vector regression (SVR), and extreme gradient boosting (XGBoost) —are then compared. MLR is a widely recognized 

statistical technique that describes the association between several independent variables and one dependent variable. The SVR al- 

gorithm is a machine learning technique employed for regression analysis; it is an expansion of the Support Vector Machine (SVM)

approach, primarily utilized for classification tasks. XGBoost is an optimization method based on decision trees, integrates regular- 

ization terms, and utilizes advanced optimization techniques [ 22 ]. 

The training and test data for these three alternative models are similar to that of the DNN model. Fig. 13 shows the comparison

of prediction results among the DNN model and the other three machine learning models. The corresponding quantitative results 

can be found in Table 6 . As can be observed, the DNN model has the lowest MAE (0.00118) and RMSE (0.00151) among the four

models. The DNN achieves exceptional performance as evidenced by its MAPE of 3 % and coefficient of determination of 0.99560.

With a MAPE of 17 %, the MLR model is clearly inferior to the DNN model. In addition, this finding provides further evidence that

the feature-response relationship is nonlinear. The MAPE for the SVR model was 12 %, and its R2 was 0.94625; this improved over

the MLR model but remained inferior to the DNN model. The MAPE for the XGBoost model is 2.8 %, and its determination coefficient

is 0.99499. In addition, its MAE and RMSE values are 0.00118 and 0.00161, respectively. XGBoost produces predictions that are

comparable to those of the DNN model, as indicated by these metrics. 
12
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Fig. 13. Comparison of wave attenuation for deep neural networks and other machine learning techniques between the observed and predicted 

values. 

Table 6 

Comparative analysis of R2 , MAE, RMSE, and MAPE metrics across DNN, MLR, SVR, and XGBoost models. 

Machine Learning Method 

Statistical Measure 

R2 MAE RMSE MAPE 

Deep neural network (DNN) 0.99560 0.00118 0.00151 0.03098 

Multiple linear regression (MLR) 0.88551 0.00568 0.00770 0.17260 

Support vector regression (SVR) 0.94625 0.00451 0.00528 0.12758 

Extreme gradient boosting (XGBoost) 0.99499 0.00118 0.00161 0.02853 

 

 

 

Conclusion 

To predict the attenuation of tsunami waves by mangrove forests, we have developed a deep neural network (DNN) model as

an alternative to the comparatively inefficient wave model calculation. The deep learning model was constructed using a dataset

generated from the Staggered Variational Boussinesq (SVB) wave model. The SVB model was validated using experimental data ex- 

hibiting a mean absolute error (MAE) ranging from 0.003 to 0.01. When constructing the deep neural network model, hyperparameter

optimization and neural network architecture selection were considered to achieve optimal performance. The DNN’s performance 
13
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was assessed using validation and test data. The DNN model yielded an MAE of 0.00118 and a coefficient of determination ( R2 ) of

0.99560. An evaluation is conducted to compare the predictions produced by the DNN model with those of three alternative machine

learning models: extreme gradient boosting (XGBoost), support vector regression (SVR), and multiple linear regression (MLR). The 

DNN model exhibits the least MAE of 0.00118 and a root mean squared error (RMSE) of 0.00151 among the four models. With a mean

absolute percentage error (MAPE) of 3 % and a coefficient of determination of 0.99560, the DNN model demonstrates its outstanding

performance. The MAE of XGBoost is 0.00118, which means that it makes predictions comparable to the DNN model. 

The use of DNN as a regression model has certain drawbacks. Firstly, the DNN model requires high data volume for accurate

regression. Secondly, due to the complexity of hyperparameter optimization in DNN models, only a few parameters can be optimized.

In addition, DNNs involve computationally expensive processes, particularly when applied to large datasets and complex architectures. 

Future studies in wave attenuation prediction using DNN models should focus on devising algorithms to enhance the efficiency of

the training process and investigating the integration of DNN algorithms with gradient boosting methods. 
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