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 Abstract: Background: Sulphamethoxazole-based Schiff-base compounds display poten-

tial antibacterial and antifungal activity. Sulphamethoxazole is considered to be a versatile 

pharmacophore that can be utilized for designing and developing numerous bioactive lead 

compounds. In this work, some new sulphamethoxazole-based Schiff base compounds were 

synthesized, which are expected to possess antimicrobial activity, making them potentially 

useful for treating microbial infections. 

Objective: Concerning issues of drug resistance in presently available drugs, this study 

aimed to synthesize new sulphamethoxazole-based Schiff bases and evaluate their antimi-

crobial activity.  

Methods: New sulphamethoxazole-based Schiff bases were synthesized by condensing sul-

phamethoxazole with various acetophenones in methanol in the presence of glacial acetic 

acid. The synthesized compounds were characterized using various techniques, such as 

TLC, melting point, IR, NMR, and mass analysis. The computational properties of the com-

pounds were also assessed using online software programs, and the similarity of the target 

compounds was also calculated as compared to sulphamethoxazole and clotrimazole. The 

antimicrobial activity of the target compounds was tested against Bacillus subtilis (Gram-

positive), Escherichia coli (Gram-negative), and Candida albicans. 

Results: The target compounds (3a-f) were successfully synthesized and characterized by 

spectroscopic and analytical methods. The results of computational properties, similarity, 

and antimicrobial activity against B. subtilis, E. coli, and C. albicans of new sulphamethox-

azole-based Schiff bases showed significant antimicrobial potential. 

Conclusion: The synthesized new Schiff bases, particularly compound 3c, exhibited prom-

ising antimicrobial activity and good physicochemical properties as compared to standard 

drugs, indicating their potential for further development as antimicrobial agents. 
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1. INTRODUCTION 

 A Schiff base is a type of imine with the general structure 
R2C=NR', which can be either a secondary aldehyde or a sec-
ondary ketamine, depending on its structure. It is formed 
through the reaction between a primary amine and a carbonyl 
compound and was initially reported by Hugo Schiff [1, 2]. 
Various strategies have been utilized in the synthesis of Schiff 
base derivatives. The conventional method involves condens-
ing carbonyl derivatives and primary amines in methanol and 
glacial acetic acid medium [3, 4]. Due to their versatile chem-
ical nature [5, 6], Schiff bases have gained attention in the de-
velopment of bioactive lead compounds with various ranges 
of biological activities, including anti-inflammatory, analge- 
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sic, antioxidant, anti-microbial, anticonvulsant, antituberculo-
sis, anticancer, and antidepressant activities [7-37]. In this 
study, we present the synthesis of computational studies of 
new sulphamethoxazole-based Schiff bases with the aim of 
evaluating their antimicrobial potential as therapeutic agents. 

2. MATERIALS AND METHODS 

2.1. Chemistry 

 Sulphamethoxazole was purchased from Sigma, and other 
chemicals, including acetophenone, 4-methoxyacetophenone, 
4-chlroracetophenone, 4-bromoacetophenone, 3-nitroaceto-
phenone, and 4-hydroxyacetophenone, were purchased from 
CDH. All chemicals were of analytical grade and purified 
prior to their use in the experiment. The melting points of the 
prepared derivatives were determined using the open capillary 
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method and were uncorrected. IR spectra of the prepared deriv-
atives were recorded on KBr discs using a Perkin Elmer RX1 
spectrometer. The 1H-NMR spectra were recorded on a Bruker 
Advance Neo spectrophotometer at 500 MHz in DMSO (dime-
thyl sulfoxide) as the solvent, with TMS (tetramethyl silane) 
serving as the internal standard. The chemical shift values are 
reported in ppm (δ). The progress of the reactions was moni-
tored using thin-layer chromatography (TLC) on silica gel G, 
and the spots were visualized using an iodine chamber. The tar-
get compounds underwent recrystallization, followed by dry-
ing, and were subsequently stored under a vacuum desiccator. 
The successful synthesis and structural characterization of the 
compounds were confirmed through melting point, TLC, IR, 
1H-NMR, and mass spectrometry methods. 

2.1.1. General procedure for the synthesis of Schiff bases 
(3a-f) 

 Equimolar amounts of sulphamethoxazole (1) (0.01mol) 
and appropriate acetophenone (2) (0.01 mol) were dissolved 
in 50 ml of methanol, and a few drops of glacial acetic acid 
were added in a 250 ml round bottom flask. The mixture was 
then refluxed for approximately 6 hrs. The resulting mixture 
was filtered, and the solvent was evaporated under reduced 
pressure. The resulting solid was washed with cold water, and 
the crude product was purified by recrystallization [38] from 
ethanol to yield the target compounds (3a-f) (Scheme 1).  

2.1.1.1. Synthesis of N-(5-methylisoxazol-3-yl)-4-((1-phe-
nylethylidene) amino) benzene sulfonamide (3a) 

 IR (KBr)cm-1: 3410 (N-H Str), 3060 (C-H Str Ar), 2927 
(C-H Str Ali), 1632 (C=C Str Ar), 1308 (C=N Str), 1143 (C-
N Str).1H-NMR (500MHz, DMSO) δ: 10.97 (s, 1H, NH), 7.93 
(d, 2H, J= 8.85 Hz), 7.56 (d, 2H, J= 8.8 Hz), 7.01 (d, 2H, J= 
8.85 Hz), 6.66 (t, 1H, J= 8.75 Hz), 6.64 (t, 1H, J= 8.75 Hz), 
6.14 (t, 1H, J= 8.75 Hz),6.04 (s, 1H, CH isoxazole), 2.50 (s, 
3H, CH3), 2.27 (s, 3H, CH3isoxazole). MS (TOF MS ES+): 
m/z: 355.29. Yield: 65.63% M.P: 145-148oC, Rf: 0.64 (n-
Hexane: Ethyl acetate; 2:1). 

2.1.1.2. Synthesis of 4-((1-(4-methoxyphenyl) ethylidene) 
amino)-N-(5-methylisoxazol-3-yl) benzenesulfonamide (3b) 

 IR (KBr) cm-1: 3430 (N-H Str), 3055 (C-H Str Ar), 2930 
(C-H Str Ali), 1634 (C=C Str Ar), 1308 (C=N Str), 1143 (C-
N Str). 1H-NMR (500MHz, DMSO) δ: 10.93 (1H, NH), 7.51 
(d, 2H, J= 8.85 Hz), 7.50 (d, 2H, J= 8.8 Hz), 7.49 (d, 2H, J= 
8.85 Hz), 6.62 (t, 1H, J= 8.75 Hz), 6.61 (t, 1H, J= 8.75 
Hz),6.06 (1H, CH isoxazole), 2.51 (s, 3H, OCH3), 2.50 (3H, 
CH3), 2.28 (3H, CH3isoxazole). MS (TOF MS ES+): m/z: 
385.32. Yield: 50.38% M.P: 144-146oC, Rf: 0.87 (n-Hexane: 
Ethyl acetate; 2:1). 

2.1.1.3. Synthesis of 4-((1-(4-chlorophenyl) ethylidene) 
amino)-N-(5-methylisoxazol-3-yl) benzenesulfonamide (3c) 

 IR (KBr)cm-1: 3431 (N-H Str), 3060 (C-H Str Ar), 2900 (C-
H Str Ali), 1635 (C=C Str Ar), 1308 (C=N Str), 1145 (C-N Str). 
1H-NMR (500MHz, DMSO) δ: 10.96 (1H, NH), 7.54 (d, 2H, 
J= 8.85 Hz), 7.52 (d, 2H, J= 8.8 Hz), 6.65 (d, 2H, J= 8.85 Hz), 
6.63 (t, 1H, J= 8.75 Hz), 6.13 (t, 1H, J= 8.75 Hz),6.05 (1H, CH 
isoxazole), 2.50 (3H, CH3), 2.27 (3H, CH3isoxazole). MS (TOF 
MS ES+): m/z: 389.74.Yield: 65.55% M.P: 135-138oC, Rf: 0.72 
(n-Hexane: Ethyl acetate; 2:1). 

2.1.1.4. Synthesis of 4-((1-(4-bromophenyl) ethylidene) 
amino)-N-(5-methylisoxazol-3-yl) benzenesulfonamide (3d) 

 IR (KBr)cm-1: 3410 (N-H Str), 3060 (C-H Str Ar), 2925 
(C-H Str Ali), 1631 (C=C Str Ar), 1308 (C=N Str), 1143 (C-
N Str). 1H-NMR (500MHz, DMSO) δ: 10.74 (1H, NH),7.83 
(d, 2H, J= 8.85 Hz), 7.66 (d, 2H, J= 8.8 Hz), 7.57 (d, 2H, J= 
8.85 Hz), 6.67 (t, 1H, J= 8.75 Hz), 6.13 (t, 1H, J= 8.75 
Hz),6.05 (1H, CH isoxazole), 2.50 (3H, CH3), 2.26 (3H, 
CH3isoxazole). MS (TOF MS ES+): m/z: 434.19. Yield: 
90.16% M.P: 125-128oC, Rf: 0.82 (n-Hexane: Ethyl acetate; 
2:1). 

2.1.1.5. Synthesis of 4-((1-(3-nitrophenyl) ethylidene) 
amino)-N-(5-methylisoxazol-3-yl) benzenesulfonamide (3e) 

 IR (KBr)cm-1: 3462 (N-H Str), 3064 (C-H Str Ar), 2928 
(C-H Str Ali), 1633 (C=C Str Ar), 1437 (N-O Str), 1308 (C=N 
Str), 1143 (C-N Str). 1H-NMR (500MHz, DMSO) δ: 10.93 
(1H, NH), 8.57 (d, 2H, J= 8.85 Hz), 8.39 (d, 2H, J= 8.8 Hz), 
8.37 (d, 2H, J= 8.85 Hz), 6.63 (t, 1H, J= 8.75 Hz), 6.11 (t, 1H, 
J= 8.75 Hz),6.03 (1H, CH isoxazole), 2.50 (3H, CH3), 2.27 
(3H, CH3isoxazole). MS (TOF MS ES+): m/z: 400.29. Yield: 
80.0% M.P: 90-93oC, Rf: 0.80 (n-Hexane: Ethyl acetate; 2:1). 

2.1.1.6. Synthesis of 4-((1-(4-hydroxyphenyl) ethylidene) 
amino)-N-(5-methylisoxazol-3-yl) benzenesulfonamide (3f) 

 IR (KBr) cm-1: 3461 (N-H Str), 3060 (C-H Str Ar), 2915 (C-
H Str Ali), 1634 (C=C Str Ar), 1308 (C=N Str), 1159 (C-N Str). 
1H-NMR (500MHz, DMSO) δ: 10.93 (1H, NH), 7.84 (d, 2H, 
J= 8.85 Hz), 7.58 (d, 2H, J= 8.8 Hz), 6.89 (d, 2H, J= 8.85 Hz), 
6.68 (t, 1H, J= 8.75 Hz), 6.66 (t, 1H, J= 8.75 Hz), 6.14 (s, 1H, 
OH), 6.02 (1H, CH isoxazole), 2.50 (3H, CH3), 2.25 (3H, 
CH3isoxazole). MS (TOF MS ES+): m/z: 371.39. Yield: 92.0% 
M.P: 92-95oC, Rf: 0.75 (n-Hexane: Ethyl acetate; 2:1). 

2.2. Computational Studies 

 The physicochemical properties (MW, MR, CAA, CMA, 
CSEV, Ovality, LogP, number of rotatable bonds, H-bonds, GI 
absorption, synthetic accessibility, Abbott bioavailability score, 
Lipinski filter) of the target compounds (3a-f) and standard 
drugs (Sulphamethoxazole and Clotrimazole) were calculated 
using Chem 3D Ultra version 12.0 and SwissADME free soft-
ware programs. The comparison of physicochemical character-
istics was made, and the similarity of target compounds was 
measured with respect to standard drugs [39-51]. 

2.3. Antimicrobial Activity of Schiff Bases  

 The in vitro antimicrobial activity of the target compounds 
was tested against the bacterial and fungal species, Bacillus 
subtilis, Escherichia coli, and Candida albicans by agar disc 
diffusion method. Sulphamethoxazole and clotrimazole were 
used as standards for antibacterial and antifungal agents. The 
standard samples for antimicrobial activity were used at 100 
µg/ml concentration in DMSO. The test organisms were grown 
on nutrient agar medium in petri plates. The discs were placed 
on the previously seeded plates and incubated at 37oC. The di-
ameter of the inhibition zone around each disc was measured 
after 24 h for bacterial and 72 h for fungal species. Antimicro-
bial activity was determined by measuring the diameter of the 
zone showing complete inhibition (mm) [52-61]. 
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Scheme 1. Synthesis of target compounds (3a-f). 

2.3.1. Statistical Analysis 

 The obtained values of antimicrobial activity were ex-
pressed as mean ± standard deviation. Statistical analysis was 
carried out by one-way ANOVA; a value of P ˂ 0.05 was con-
sidered statistically significant. 

3. RESULTS AND DISCUSSION 

3.1. Synthesis of Schiff bases (3a-f) 

 The synthesis of Schiff bases with specific acetophenones 
in methanol as a solvent and catalyst (glacial acetic acid) re-
sulted in six new sulphamethoxazole-based target compounds 
(3a-f) (Scheme 1). Target compounds were characterized by 
spectroscopic methods. The FTIR spectra of target compounds 
showed that the band of C=N at 1308 and the band of NH ap-
peared in the prepared target compounds with different shifting 

from 3410 to 3462 cm−1. The 1H-NMR spectrum of the target 
compounds showed the following characteristic chemical 
shifts: the singlet signal in between δ = 2.25-2.28 ppm sug-
gested the attribution of the protons of the CH3 group, the sin-
glet signal at δ = 6.02-6.06 ppm suggested the attribution of the 
proton of CH of the isoxazole ring, the signal at δ = 8.57 to 6.11 
ppm suggested the attribution of the protons of two aromatic 
benzene rings, and the singlet signal at δ = 10.97 to 10.74 ppm 
suggested the attribution of the proton of the NH group. The 
mass spectra of target compounds showed the molecular ion 
peaks corresponding to the respective molecular masses. 

3.2 Computational studies 

3.2.1. Calculation of physicochemical properties 

 The physicochemical properties of target compounds were 
calculated and are given in Tables 1 and 2. 
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Table 1. Physicochemical properties of target compounds (3a-f). 

Cpd. Code MWa MRb CAAc CMAd CSEVe Ovf Log Pg 

3a 355.41 97.63 594.54 308.65 262.60 1.5563 3.10 

3b 385.44 104.88 641.30 334.96 285.74 1.5966 2.97 

3c 389.86 102.24 631.59 397.99 281.21 1.5801 3.66 

3d 434.31 105.32 627.73 328.85 282.71 1.5786 3.93 

3e 400.41 105.91 638.63 335.62 291.86 1.5773 2.37 

3f 371.41 99.45 562.88 299.19 261.13 1.5143 2.71 

Clotrimazole 344.84 102.07 540.04 284.91 270.20 1.4096 5.19 

Sulphamethox-

azole 

253.28 64.83 446.49 219.81 181.31 1.4189 0.86 

Abbreviations: MWa = Molecular Weight, MRb = Molar Refractivity, CAAc = Connolly Accessible Area, CMAd = Connolly Molecular Area, CSEVe = Connolly 

Solvent Excluded Volume, Ovf = Ovality, Log Pg = Log of the partition coefficient. 

Table 2. Physicochemical properties of target compounds (3a-f). 

Cpd. 

Code 

Number of  

Rotatable 

Bonds 

Number of H-

bond Acceptors 

Number of H-

bond Donors 
GI Absorption 

Synthetic  

Accessibility 

Abbott  

Bioavailability 

Score 

Lipinski Filter 

3a 5 5 1 High 3.31 0.55 Yes; 0 violation 

3b 6 6 1 High 3.33 0.55 Yes; 0 violation 

3c 5 5 1 High 3.29 0.55 Yes; 0 violation 

3d 5 5 1 High 3.33 0.55 Yes; 0 violation 

3e 6 7 1 Low 3.46 0.55 Yes; 0 violation 

3f 5 6 2 High 3.26 0.55 Yes; 0 violation 

Cl* 4 1 0 High 2.25 0.55 
Yes; 1 violation: 

MLOGP>4.15 

Sul* 3 4 2 High 2.73 0.55 Yes; 0 violation 

Abbreviations: Cl*; Clotrimazole: Sul*; Sulphamethoxazole. 

 Target compounds (3a-f) demonstrated lipophilicity in be-
tween ranges of standard drugs, indicating their ability to pen-
etrate the lipophilic cell membrane. Molecular size is a signif-
icant factor in determining both the physicochemical and bio-
logical properties of compounds, as they are often size-de-
pendent. Various methods can be employed to measure mo-
lecular size, such as calculating molecular weight from the 
molecular formula or counting the number of atoms in the 
molecule. The permeability of compounds is usually influ-
enced by their molecular size. Most drugs commercially avail-
able have molecular weights ranging from 200 to 600 Daltons. 
The molecular weight of the target compounds falls within the 
range of the standard drugs. Molar refractivity (MR) is a size 
descriptor that is related to the molecular weight and polariza-
bility of molecules. Molar refractivity is calculated as the ratio 
of the liquid density and is also influenced by the refractive 
index of the liquid. In this study, we used molar refractivity as 
a physicochemical property to evaluate the target compounds 
and standard drugs, which can provide valuable information 
for drug design and optimization [62]. Ovality, which 

measures the ratio of the surface area of a molecule to the sur-
face area of a sphere with the same volume, was calculated as 
a size descriptor. The results showed that the ovality values of 
the target compounds were within the range observed for the 
standard drugs. The physicochemical properties of the test 
compounds, including CAA, CMA, CSEV, number of rotata-
ble bonds, number of hydrogen bond acceptors, number of hy-
drogen bond donors, GI absorption, Synthetic Accessibility 
(SA) score, Abbott bioavailability, and Lipinski rule of five 
criteria, were evaluated and compared to those of standard 
drugs [63-75]. The values obtained for these descriptors were 
found to be within the range observed for the standard drugs. 

3.2.2. Similarity Calculation 

 A comparison of physicochemical characteristics was 
made, and the similarity of target compounds (3a-f) with re-
spect to standard drugs was calculated using six physicochem-
ical properties. Firstly, the distance (di) of a particular target 
compound (j) to the drug molecule, e.g., sulphamethoxazole 
and clotrimazole, was calculated by the following formula:  
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1- X

X
di =
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 Where Xi.j represents the value of molecular parameter ‘i’ 
for compound ‘j’, and Xi,std is the value of the same molecu-
lar parameter for the standard drugs, e.g., sulphamethoxazole 
and clotrimazole. Then, the similarity between compound ‘j’ 
and the standard drug was calculated using the following 
equation: 

 Similarity (%) = (1 - R) × 100, where R = √d2, representing 
the quadratic mean (root mean square) and indicating a meas-
ure of central tendency. Among the compounds analyzed, (3a) 
and (3f) showed the highest structural similarity to both sul-
phamethoxazole and clotrimazole, as detailed in Table 3. 

Table 3. Similarity of the target compounds (3a-f) with respect 

to the standard drugs. 

Cpd.Code Similaritya,b(in%) to 

Sulphamethoxazole 

Similaritya,b(in%) to 

Clotrimazole 

3a 61.70 92.84 

3b 51.07 87.56 

3c 46.09 81.27 

3d 48.31 85.58 

3e 49.00 85.00 

3f 60.86 94.81 

Note: a (1 - R) · 100, where R= quadratic mean (root mean square mean). 
bCalcd. from physicochemical properties: molecular weight; molar refractiv-

ity, Connolly solvent accessible surface area; Connolly molecular surface 

area; Connolly solvent excluded volume; ovality. 

3.3. Antimicrobial Activity for Target Compounds (3a-f) 

 The antimicrobial activity of the target compounds (3a-f) 
against Bacillus subtilis, Escherichia coli, and Candida albi-
cans was compared to standard drugs sulphamethoxazole and 
clotrimazole. The results of antimicrobial activity are given in 
Table 4. 

Table 4. The Antimicrobial Activity of target compounds (3a-f). 

Cpd.Code 

Zone of Inhibition 

(mm) Against B. 

Subtilis 

Zone of Inhibi-

tion (mm) 

Against E. Coli 

Zone of Inhi-

bition (mm) 

Against  

C. Albicans 

3a 20 ±0.00 21±0.03 20±0.01 

3b 21 ±0.04 22±0.05 20±0.02 

3c 23±0.04 25±0.02 22±0.64 

3d 22±0.08 24±0.01 21±0.04 

3e 21±0.05 22±0.08 19±0.04 

3f 19±0.03 20±0.04 18±0.08 

Sulpha-

methoxa-

zole 

26±0.00 29±0.00 - 

Clotrima-

zole 
- - 24±0.02 

 The compound with a 4-chloro (3c) exhibited the highest 
activity against all tested microorganisms, with inhibition 
zones measuring 23 mm for B. subtilis and 25 mm for E. coli, 
as compared to 26 and 29 mm of sulphamethoxazole, respec-
tively. A 22 mm zone of inhibition was observed for C. albi-
cans compared to 24 mm of clotrimazole. However, other 
compounds, such as 3a, 3b, 3d, 3e, and 3f, demonstrated mod-
erate antimicrobial activity as compared with standard drugs. 
The antimicrobial results revealed that the synthesized target 
compounds exerted a stronger inhibitory effect on these mi-
croorganisms compared to standard drugs, which may be due 
to the presence of imine or azomethine group of Schiff base 
containing the basic skeleton of sulphamethoxazole in their 
structure. Additionally, the extent of inhibition varied depend-
ing on the specific substitution within the Schiff bases. 

CONCLUSION 

 In the present work, we synthesized six new sulphameth-
oxazole-based Schiff bases together with their predictions of 
computational properties and antimicrobial activity. The 
structures of the target compounds (3a-f) were determined us-
ing spectroscopic techniques (FTIR, 1H NMR, and Mass spec-
tra). The physicochemical properties of the target compounds 
were found to be as good as standard drugs and significantly 
obeyed Lipinski's rule of 5. The target compounds showed 
good similarity (46.09 - 94.81%) with respect to standard 
drugs. The target compounds were evaluated for antimicrobial 
activity against B. subtilis, E. coli, and Candida albicans. The 
results of the study revealed that Schiff bases with a 4-chloro 
group (3c) demonstrated the highest antibacterial potency 
against B. subtilis, E. coli, and C. albicans due to the presence 
of an electron-withdrawing group, indicating their potential 
for further development as antimicrobial agents. 
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