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A B S T R A C T

Dengue fever is a serious public health issue worldwide, particularly in tropical and subtropical areas. Early
detection and accurate diagnosis are essential for effective management and control of the disease. In this study,
we present a fuzzy hybrid approach (F-TLBO-APSO) for the detection and diagnosis of dengue disease using an
advanced teaching-learning technique with adaptive particle swarm optimization. The proposed method com-
bines the strengths of fuzzy logic, teaching learning-based optimization (TLBO), and adaptive particle swarm
optimization (APSO) to improve the accuracy and efficiency of dengue detection based on symptoms. A key
challenge addressed is the management of uncertain information existing in the problem. To validate the pro-
posed technique, we applied it to a case study, demonstrating its robustness. The results indicate the versatility of
the F-TLBO-APSO algorithm and highlight its value in detecting dengue based on symptoms. Our numerical
computations reveal the advantages of the F-TLBO-APSO algorithm compared to TLBO and APSO.

1. Introduction

Dengue is a mosquito-borne virus-related disease caused by the
dengue virus. The dengue virus is spread by female mosquitoes – Aedes
aegypti. These dengue mosquitoes usually bite during the day and are
found both inside and outside the house. These mosquitoes are found to
be at the peak of their activity at dawn and dusk. The symptoms can
develop in the next 6 to 10 days after being bitten by an infected mos-
quito. Four different serotypes of the virus that transmit dengue fever
can infect humans. These serotypes constitute a group of viruses that are
closely related to one another. These viruses can only be distinguished
because they contain antigens that are relatively dissimilar to our own
antigens, which are substances that influence our bodies and cause us to
develop antibodies. In our country as well as other subtropical and
tropical regions of the world, dengue cases are more prevalent. The
severity and mortality of dengue are significantly reduced by early
detection and prompt treatment. However, because of the disease’s
complexity and non-linear nature, correct diagnosis is often difficult.
Traditional diagnostic techniques may have drawbacks in terms of ac-
curacy, efficiency, and computational cost.
Teaching-learning-based optimization (TLBO) is a well-known

population-based optimization technique where the population can be
considered as a class of learners. Due to the teacher’s hard work, the
students interact with them to further change and expand their knowl-
edge. The TLBO algorithm is a discovery for a large number of appli-
cations in diverse fields of engineering, science, and technology. Rao
et al. [1] introduced the concept of TLBO to solve constrained me-
chanical design problems. The TLBO algorithm involves only common
monitoring structures like the number of generations and population
size for the process. The TLBO algorithm has gained popularity with
variations alongside the existing optimization techniques. TLBO in-
volves a smaller number of function evaluations as compared to the
other optimization techniques [2–4]. Rao et al. [5] chose a compara-
tively smaller number of evaluation functions and demonstrated the
better performance of TLBO. Rao et al. [6] introduced an enhanced
version of the TLBO algorithm for solving unconstrained and con-
strained real-parameter optimization problems. The modifications made
to TLBO, including the randomization mechanism and diverse popula-
tion initialization strategy, improved its exploration and exploitation
capabilities. Rao et al. [7] showcased the application of the TLBO al-
gorithm for solving composite test functions. The results indicated that
TLBO is a promising optimization technique, demonstrating competitive
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performance and efficiency in solving complex optimization problems
represented by composite functions. Rao et al. [8] proposed the appli-
cation of the TLBO technique for the multi-objective design optimization
of a robot gripper. The results demonstrate the capability of TLBO in
finding a set of Pareto-optimal solutions, representing the optimal
trade-offs between conflicting objectives. Zeuxan et al. [9] introduced a
new variant of the TLBO algorithm that incorporates a course selection
mechanism. The integration of course selection enhances the optimi-
zation process by allowing students (solutions) to adapt their strategies
and dynamically adjust their behavior. TLBO has also been applied in
the optimization of ORP [10] and in testing the performance of combi-
natorial problems [11].
On the other hand, in the Particle Swarm Optimization (PSO) pro-

cess, we require the inertial weight and acceleration constants as our
desired structures. Kennedy & Eberhart [12] introduced Particle Swarm
Optimization (PSO). PSO is a population-based stochastic algorithm
used for continuous optimization problems. PSO consists of a swarm of
bird-like particles, each particle residing at a position in the search space
and initialized with position and velocity in a random manner. In the
PSO technique, all particles move based on their own experiences.
Opposition-based PSO with Cauchy Mutation [13] and for Noisy Prob-
lems [14] have been applied in existing studies. The basics and funda-
mentals of Computational Swarm Intelligence [15] techniques have also
been studied. A modified PSO [16] and filtering machinery-based PSO
[17] have also been used for optimization purposes.
But in real-life problems, things that are not so clear, i.e., vague in

nature, refer to the term fuzzy. Many times, we come across a situation
when we cannot determine whether the condition is either true or false;
in such cases, fuzzy logic [18–20] offers the flexibility for appreciated
reasoning [21]. In the bi-valued system, ‘1′ represents the complete truth
value and ‘0′ represents the complete false value. However, in the fuzzy
logic system, there is no space for completely true and false values. In
fuzzy logic, there is a midway solution to represent partially true and
partially false values. Fuzzy logic was introduced by Professor L. A.
Zadeh in 1965 [22]. Fuzzy logic is used to describe a vague
common-sense system in which the truth values are subsets of unit in-
tervals, and linguistic labels include quite true, true, very true, etc. The
following figure differentiates bi-valued logic from fuzzy logic.

Fuzzy logic, combined with other techniques, has shown its robust-
ness in various fields. Zhang et al. in [23] introduced a combination of
fuzzy optimization strategy and fuzzy adaptive particle swarm optimi-
zation (PSO) to address the complex and conflicting objectives of reac-
tive power and voltage control. To examine distribution feeder
reconfiguration, a modified HBMO method [24] has also been intro-
duced. A reactive power flow study using an artificial bee colony

approach [25] is also conducted to optimize active power loss in the
scheme. A reactive power dispatch based on quasi-oppositional TLBO
[26] has also been used for the optimization process. A fuzzy-TLBO [27]
for reactive power control parameter scheduling has also been utilized
in the existing literature. The objective of this research paper is to pro-
pose and develop a novel optimization approach for tackling the chal-
lenges associated with the control and prevention of dengue disease. The
paper aims to combine the benefits of fuzzy logic, advanced
teaching-learning techniques, and particle swarm optimization (PSO) to
create an effective and efficient methodology for dengue control.
An innovative approach that integrates fuzzy logic with particle

swarm optimization (PSO) [28] to enhance vector quantization learning
schemes in the field of image compression. The combination of these
methods allows for more adaptive and efficient optimization, reducing
both error rates and computational costs associated with image
compression. This hybrid approach demonstrates significant improve-
ments in compression quality, making it a robust solution for large-scale
image data processing. The application of discrete particle swarm
optimization (DPSO) [29] to feature selection in binary classification
tasks. This method not only enhances computational efficiency but also
addresses the challenge of finding optimal feature subsets in
high-dimensional data, which is vital for improving the performance of
machine learning models in classification problems. A hybrid clustering
method that integrates fuzzy c-means (FCM) with an enhanced version
of particle swarm optimization [30]. The improved PSO algorithm en-
hances the search for optimal clustering parameters, leading to more
accurate and robust clustering outcomes. This hybrid method proves
especially effective in complex datasets where traditional clustering
techniques may struggle. A novel method using convolutional neural
networks (CNNs) [31] combined with PSO for reducing false positives in
lung nodule detection on CT images. This combination enhances the
reliability of automated systems in identifying lung nodules, ultimately
contributing to better early detection of lung cancer through computed
tomography. A hybrid algorithm combining fuzzy c-means (FCM) and
PSO for brain image segmentation [32]. This technique proves partic-
ularly beneficial for handling the complex and fuzzy boundaries of brain
tissues, where traditional segmentation methods often fall short. The
hybrid FCM-PSO algorithm significantly enhances the precision of brain

image analysis, facilitating more accurate medical diagnoses. A
multi-objective PSO-based feature selection method that integrates node
centrality for analysing medical datasets [33]. This approach proves
highly effective for improving classification performance in medical
datasets, offering a more nuanced and powerful feature selection strat-
egy. The practical applications of fuzzy control systems in industrial
environments [34]. Fuzzy control is widely used for managing processes
that involve uncertainty and imprecise information. This foundational
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work laid the groundwork for many modern applications of fuzzy logic
in both industrial and technological contexts.
The Score-Based Artificial Fish Swarm Algorithm (SAFSA) [36] for

the diagnosis of Parkinson’s disease. Their study introduced a novel
intelligent approach that merges SAFSA with traditional diagnostic
techniques. SAFSA, a variant of the traditional Artificial Fish Swarm
Algorithm (AFSA), enhances optimization processes by simulating fish
behaviours such as foraging, swarming, and following. In their work,
this algorithm was applied to patient data, effectively improving the
accuracy and speed of diagnosis. PSO-based Adaptive Neuro-Fuzzy
Inference System (ANFIS) model [37] to predict Chikungunya out-
breaks. Their work focused on using PSO to optimize the fuzzy rules and
membership functions within the ANFIS model, leading to improved
accuracy in forecasting disease outbreaks. Chikungunya, a vector-borne
disease, presents challenges in early detection due to its symptom
overlap with other diseases. The hybrid approach combining PSO with
neuro-fuzzy inference allowed the model to handle the uncertainty in
symptom presentation and environmental factors. This system demon-
strated improved predictive power compared to traditional models,
making it a valuable tool for healthcare professionals dealing with dis-
ease prevention and management. A systematic review of swarm intel-
ligence techniques [38] applied to intrusion detection systems,
including applications in healthcare data security. Although their pri-
mary focus was on network security, the principles of swarm intelli-
gence—especially PSO—are applicable to medical systems requiring
real-time data analysis and anomaly detection. This approach could be
extended to healthcare systems where the detection of anomalies in
patient data, such as irregularities in vital signs or medical imaging, is
critical for diagnosing diseases early. A comprehensive survey on the
applications of swarm intelligence, particularly the hybridization of PSO
with Ant Colony Optimization (ACO), in healthcare [39]. The paper
reviewed multiple implementations of these techniques in medical
image analysis and disease surveillance systems. This survey also out-
lined the potential of these optimization techniques in real-time disease
monitoring systems.
A hybrid method combining Particle Swarm Optimization (PSO)

with Artificial Neural Networks (ANN) [40] for cancer detection. Their
research focused on the classification of microRNA patterns, which are
crucial in early-stage cancer detection. By using PSO to optimize the
weights of ANN, the proposedmethod efficiently reduced computational
costs and improved classification accuracy. This hybrid approach is
especially significant in medical diagnostics where accuracy and early
detection are critical.
The specific objectives of the paper are as follows:

i. Introduce a fuzzy hybrid approach: The paper aims to propose a
hybrid approach that integrates fuzzy logic with advanced
teaching-learning techniques and PSO. This hybrid approach le-
verages the strengths of each technique to effectively address the
complexities and uncertainties associated with dengue disease
control.

ii. Enhance optimization capabilities: The objective is to enhance
the optimization capabilities of the proposed approach by uti-
lizing advanced teaching-learning techniques. This technique
stimulates the teaching and learning interactions between stu-
dents and teachers to improve the search process and conver-
gence to optimal solutions.

iii. Incorporate fuzzy logic: The paper aims to incorporate fuzzy
logic to handle the inherent uncertainties and imprecise infor-
mation associated with dengue disease control. Fuzzy logic al-
lows for the representation and manipulation of vague and
uncertain data, enabling more robust decision-making and con-
trol strategies.

iv. Utilize particle swarm optimization: The objective is to utilize
the particle swarm optimization technique to optimize the pa-
rameters and variables involved in dengue disease control. PSO is

a population-based optimization algorithm inspired by social
behavior, which facilitates efficient exploration and exploitation
of the solution space.

v. Evaluate the proposed approach: The paper intends to evaluate
the effectiveness and performance of the fuzzy hybrid approach
using real-world data and case studies related to dengue disease
control. The objective is to compare the results obtained from the
proposed approach with existing approaches or techniques to
demonstrate its superiority in terms of accuracy, efficiency, and
effectiveness.

The present research work consists of nine segments. Segment 2
covers the fundamental concepts of fuzzy sets, fuzzy numbers, TLBO,
and advanced PSO. In Segment 3, we introduce our novel optimization
technique, Fuzzy Hybrid Advanced TLBPSO (F-TLBO-APSO). Segment 4
applies this technique to data on dengue-infected patients [35]. The
mathematical formulation of the F-TLBO-APSO algorithm is presented in
Segment 5. Segment 6 includes numerical computations of the proposed
work. A comparative study is conducted in Segment 7. Segment 8 pro-
vides a discussion and conclusion of the entire manuscript. The last and
ninth segment describes the limitations and future directions of this
work.

2. Basic concepts

2.1. Fuzzy set

A fuzzy set A defined on a universal set U denoted as:

A = {(x, μA(x)) : x ∈ U} (1)

where, μA(x) : U→[0, 1] represents the membership value of x given in
universal set U.

2.2. Fuzzy number

A fuzzy set A defined on a universal setU is known as a fuzzy number
if it satisfies the following three properties defined as:

i. It is “normal” i.e., there exists a point x ∈ U such that μA(x) = 1.
ii. α − cut of A i.e., Aα is a closed interval, α ∈ [0, 1].
iii. Support of A i.e., {x ϵ R: μA(x) > 0} is bounded.

A triangular fuzzy number μtri(τ) is given as:

μtri(τ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ − a
b − a

, a ≤ τ ≤ b

c − τ
c − b

, b ≤ τ ≤ c

0 else

where a < b < c on real line.

2.3. Teaching learning-based optimization (TLBO)

TLBO is inspired by the teaching-learning process, where the
teacher’s knowledge influences the learner’s output. This algorithm
eliminates the need for specific parameters and only relies on basic
control parameters such as population size. The TLBO algorithm divides
the selected population into two phases: the teacher phase and the
learner phase. In this approach, population size represents the learners,
and various design variables from different subject types are assigned to
the learners. The fitness value corresponds to the optimization prob-
lem’s learners’ results. The equation number 1 to 9 in this section is
taken from [1].
TLBO operates in two phases: the Teacher phase and the Learner

phase.
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a) Teacher phase: In the teacher phase of TLBO, learners acquire
knowledge from the teacher. At iteration ’n’, considering the number
of subjects ’μ’ (design variables), ’x’ Please check.learners (popula-
tion size, P = 1, 2, 3, …x), and λm,n the mean result of learners in a
specific subject ’m’ (m = 1, 2, 3,… µ), the best learner’s overall result
χtotal − Pbest,n obtained collectively across all subjects, is considered as
the result of the best learner. The algorithm designates this best
learner as the teacher, who aims to enhance the learners’ results. The
difference between the mean result of each subject and the corre-
sponding result of the teacher is calculated using Eq. (2):

Difference meanm,P,n = Rn

(
χm,Pbest,n − τFλm,n

)
(2)

where χm,Pbest,n is the result of best learner in subject m, τF is the teaching
factor which decides the value of mean to be changed and Rn is the
random number in the range [0,1]. Value of τF is decided randomly with
equal probability as,

τF = round[1+ rrand(0,1){2 − 1}] (3)

τF is not given as an input to the algorithm and its value is randomly
decided by the algorithm from Eq. (3). After conducting many experi-
ments on many benchmark functions, it is concluded that this algorithm
performs better if τF is between 1 and 2. However the algorithm is found
to perform much better if the value of τF is either 1 or 2 and hence to
simplify this algorithm, τF is suggested to take either 1 or 2 depending on
the estimation (approx.) criteria given by Eq. (2). Based on
Difference meanm,P,n the existing solution is updated in the teacher
phase according to the following expression.

χʹ
m,P,n = χm,P,n + Difference meanm,P,n (4)

In the above Eq. (4), χʹ
m,P,nis the updated value of χm,P,n. χʹ

m,P,nis
accepted if it gives the better functional value. All the accepted func-
tional values at the end of the teacher’s phase are maintained and these
values are the input to learner phase. The learner phase depends upon
the teacher phase.

a) Learner phase: In the second part of this algorithm, learners expand
their knowledge through interactions with each other. They
randomly interact with other learners to enhance their knowledge. A
learner acquires new information if other learners possess greater
knowledge. The learning process in this phase, involving a popula-
tion size of n, is described below. Randomly choose two learners, A
and B, such that

χʹ
total− A,n ∕= χʹ

total− B,n (5)

In the above Eq. (5), the randomly select two updated functional
values, χʹ

total− A,n and χʹ
total− B,n, which represent the values of learner A

and learner B, respectively, at the end of the teacher’s phase.

χʹ́
m,A,n = χʹ

m,A,n + Rn
(
χʹ

m,A,n − χʹ
m,B,n

)
,

ifχʹ
total− A,n < χʹ

total− B,n (6)

χʹ́
m,A,n = χʹ

m,A,n + Rn
(
χʹ

m,B,n − χʹ
m,A,n

)
,

ifχʹ
total− B,n < χʹ

total− A,n (7)

If χʹ́
m,A,n (m,A, n) yields a superior unction value, it is accepted. Eqs.

(6) and (7) are utilized for problem minimization, while Eqs. (8) and (9)
are employed for problem maximization.

χʹ́
m,A,n = χʹ

m,A,n + Rn
(
χʹ

m,A,n − χʹ
m,B,n

)
,

ifχʹ
total− B,n < χʹ

total− A,n (8)

χʹ́
m,A,n = χʹ

m,A,n + Rn
(
χʹ

m,B,n − χʹ
m,A,n

)
,

ifχʹ
total− A,n < χʹ

total− B,n (9)

2.4. Advanced particle swarm optimization (APSO)

Incorporating considerations such as the benefits, drawbacks, and
parameter impacts of PSO, this study includes advanced PSO (APSO).
APSO utilizes novel parameters (ω, α1, α2) that gradually vary
(decrease/increase) and are defined as follows (The equation number 10
to 12 in this section is taken from [23]):

ω = ωz + (ωa − ωz)

(
i

imax

)2

; α1 = α1Z
(

α1a
α1Z

)

(
i

imax

)2

and α2 = α2Z
(

α2a
α2Z

)

(
i

imax

)2

(10)

In the above Eq. (10), ωa and ωz represent the initial and final values
of ω, respectively. α1a and α1z correspond to the initial and final values of
α1, while α2a and α2z represent the initial and final values of α2. The
iteration index is denoted by i, and imax indicates the maximum number
of iterations. The velocity ϑi+1

k,l and position yi+1
k, l of the k

th particle are
updated using the following equations in APSO (shown by Eqs. (11) &
12).

ϑi+1
k,l =

(

ωz +(ωa − ωz)

(
i

imax

)2)

ϑi
k,l

+

⎛

⎜
⎝α1Z

(
α1a
α1Z

)

(
i

imax

)2⎞

⎟
⎠R1

(
Pi

bestk,l − yi
k, l

)

⎛

⎜
⎝α2Z

(
α2a
α2Z

)

(
i
imax

)2⎞

⎟
⎠R2

(
gibest − y

i
k, l

)
(11)

yi+1
k, l = yi

k, l + ϑi+1
k,l (12)

The pseudocode for APSO is presented below:

Initialize particle positions and velocities
Initialize personal best positions and global best position
Set iteration index i = 0
Set maximum number of iterations imax
while i < imax do:
for each particle in the population do:
Update velocity using Eq. (11)
Update position using Eq. (12)
Evaluate fitness of the current position
Update personal best position if necessary
Update global best position if necessary
Update gradually varying parameters ω, α1, and α2 using Eq. (10)
Increment iteration index i by 1
End loop
Return global best position as the solution
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3. Proposed technique fuzzy hybrid advanced TLBPSO (F-TLBO-
APSO)

A step-by-step algorithmic procedure for the proposed technique
“Fuzzy Hybrid Advanced TLBPSO (F-TLBO-PSO)” for detecting dengue
disease based on symptoms is presented as follows:

a. Fuzzification:
a. Define the symptoms associated with dengue disease and specify
their corresponding values.

b. Establish membership functions for each symptom variable to
capture the degree of membership for each value.

c. Assign the symptom values to their respective membership func-
tions, resulting in the generation of fuzzy sets for each symptom.

b. Sugeno Inference System:
a. Define the fuzzy rules that establish the connection between the
fuzzy symptoms and the diagnosis of dengue disease.

b. Combine the fuzzy symptoms using fuzzy logic operations (AND,
OR, NOT) to construct the antecedent part of each rule.

c. Specify the consequent part of each rule based on the diagnosis of
dengue disease.

d. Employ the Sugeno inference system to ascertain the overall
diagnosis by considering the fuzzy rules and fuzzy symptoms.

c. Linear Objective Function:
a. Transform the fuzzy diagnosis obtained from the Sugeno infer-
ence system into a precise, crisp value.

b. Establish a linear objective function that measures the accuracy or
quality of the diagnosis, considering specific evaluation criteria
(e.g., sensitivity, specificity, accuracy).

c. The objective function should accept the crisp diagnosis and the
actual diagnosis as inputs, generating a quantitative measure that
assesses the level of concordance between the diagnosis and the
actual condition.

d. Hybrid TLBO-APSO Optimization:
a. Initialize a population of potential solutions (patients). The pop-
ulation is split into two sub-populations: P1 (the top half) and P2
(the remaining portion), enabling global and local search
capabilities.

b. Evaluate the fitness of each solution by computing the objective
function value.

c. Select the best and gbest solutions from the population P1 and P2
respectively.

d. If best is better than gbest merge P1 with P2 and Facilitate a
teaching and learning process to enhance solution quality.
Otherwise merge P2 with P1 and apply advanced Particle Swarm
Optimization (APSO) to refine the objective function by adjusting
positions and velocities based on individual and swarm best
positions.

e. Repeat steps b to f until a termination condition is met (e.g.,
maximum iterations or satisfactory solution).

e. Final Diagnosis:

Fig. 1. Flow chart for the Proposed Algorithm F-TLBO-APSO.
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a. Retrieve the optimal solution obtained through TLBO-APSO
optimization, indicating the optimized diagnosis.

b. Translate the crisp diagnosis into meaningful information for
dengue disease detection, such as determining a positive or
negative diagnosis and assessing the severity level.

c. Communicate the final diagnosis to the healthcare professional or
system user.

Please note that this algorithmic procedure is a general outline based
on the information provided. The specific implementation details and
parameters may vary depending on the research or application context.
Introducing the advanced TLBPSO, a hybrid algorithm, called Fuzzy
Hybrid Advanced Teaching Learning Based Particle Swarm Optimiza-
tion (F-TLBO-APSO), is proposed for further optimization improve-
ments., F-TLBO-APSO is developed by combining APSO with TLBO,
aiming for superior performance. The flowchart of F-TLBO-APSO is
illustrated in Fig. 1.

4. Data collection

Data collection for dengue patients involves gathering relevant in-
formation about diagnosed individuals. The process includes the
following steps:

1. Identification: Patients are identified through hospital records,
clinics, or public health surveillance systems, with health authorities
and medical professionals playing a crucial role.

2. Patient Information:Demographic details like age, gender, address,
and contact information are collected to maintain accurate records
and enable communication and follow-up.

3. Medical History: Detailed histories are obtained, covering symp-
toms, onset dates, disease severity, prior medical conditions, and
treatments. This information helps to understand the patient’s health
status and disease progression.

4. Laboratory Tests: Diagnostic tests, such as blood tests, confirm the
presence of dengue virus or antibodies, categorizing the infection
type (e.g., dengue fever, dengue haemorrhagic fever).

5. Clinical Assessment: Healthcare professionals evaluate patients
through physical examinations and symptom assessments to deter-
mine disease severity and appropriate treatment.

6. Follow-up: Some patients require follow-up visits or monitoring to
track recovery progress and identify potential complications. These
visits ensure comprehensive care and ongoing data collection.

It is important to comply with ethical and privacy considerations,
ensuring patient confidentiality and anonymity. Adherence to health-
care regulations and guidelines is crucial during the data collection
process.
Here, the process of secondary data collection for dengue-infected

patients involved gathering data from Lala Lajpat Rai Memorial Medi-
cal College in Meerut, India. The data focused on six key symptoms:
blood sugar levels, temperature, pulse rate, weight, age, and blood
pressure.

5. Mathematical formulation of the proposed F-TLBO-APSO
algorithm

Let us consider a set of patients

S = {s1, s2,…sn}

of a dengue infected patient p. Now, express each symptom of the patient
in the form of trapezoidal fuzzy number

A = (a11, a22, a33, a44 )

as shown in Fig. 2 for each input factors;

Input factors are categorized into two linguistic categories based on
medical experts’ knowledge. Temperature is classified as normal
([95–99]) and severe ([≥98]). Sugar is categorized as normal
([130–150]) and severe ([≥140]). Pulse rate is classified as controlled
([85–95]) and severe ([≥90]). Age is categorized as low ([35-45]) and
high ([≥40]). Weight is classified as low ([48–55]) and high ([≥54]).
Lastly, blood pressure is categorized as normal ([90–118]) and severe
([≥115]).
A fuzzy rule base is considered for the Sugeno’s inference system,

following a specific form:
R : Antecedent part
x1 is A1and x2 is A2 and x3 is A3 and x4 is A4
and x5 is A5 and x6 is A6
Consequent part
y = a0 + x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

where, Ai; i = 1, 2,…6 are trapezoidal fuzzy numbers for each input
factor expressed by

μAi
(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ − a11
a22 − a11

; a11 ≤ τ ≤ a22

1; a22 ≤ τ ≤ a33
a44 − τ

a44 − a33
; a33 ≤ τ ≤ a44

0; else

and ai; i = 0, 1,…6 are the weights. The obtained output will be used as
the objective function for the proposed F-TLBO-APSO algorithm. Next,
let’s analyze a patient’s data and determine the membership values for
each input factor using the trapezoidal membership function. Subse-
quently, we will consider an objective function in a specific form.

y = a0 + x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6 (13)

In Eq. (13), For the optimization of weights ai; i = 0, 1,…6, we will
apply the TLBO technique. Now, we calculate the difference mean value
by the Eq. (2)

Difference meanm,P,n = Rn

(
χm,Pbest,n − τFλm,n

)

Based on this, the solution can be updated by Eq. (4)

χʹ
m,P,n = χm,P,n + Difference meanm,P,n

Now, we calculate randomly select two updated functional values,
χʹ

total− A,n and χʹ
total− B,n, which represent the values of learner A and

learner B, respectively, such that

χʹ
total− A,n ∕= χʹ

total− B,n

Now, we calculate the value of χʹ́
m,A,n at the end of the teacher’s

phase (using Eqs. (6)-9).

χʹ́
m,A,n =

{
χʹ

m,A,n + Rn
(
χʹ

m,A,n − χʹ
m,B,n

)
, ifχʹ

total− A,n < χʹ
total− B,n

χʹ
m,A,n + Rn

(
χʹ

m,B,n − χʹ
m,A,n

)
, ifχʹ

total− B,n < χʹ
total− A,n

Fig. 2. Geometrical representation of trapezoidal fuzzy number
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χʹ́
m,A,n =

{
χʹ

m,A,n + Rn
(
χʹ

m,A,n − χʹ
m,B,n

)
, ifχʹ

total− B,n < χʹ
total− A,n

χʹ
m,A,n + Rn

(
χʹ

m,B,n − χʹ
m,A,n

)
, ifχʹ

total− A,n < χʹ
total− B,n

Now apply the APSO and find the value of ω, α1, and α2 by the
given expression (using Eq. (10));

ω = ωz + (ωa − ωz)

(
i

imax

)2

; α1 = α1Z
(

α1a
α1Z

)

(
i

imax

)2

and α2 = α2Z
(

α2a
α2Z

)

(
i

imax

)2

The updated velocity of proposed APSO is calculated by Eq. (11)

ϑi+1
k,l =

(

ωz +(ωa − ωz)

(
i

imax

)2)

ϑi
k,l

+

⎛

⎜
⎝α1Z

(
α1a
α1Z

)

(
i

imax

)2⎞

⎟
⎠R1

(
Pi

bestk,l − yi
k, l

)

+

⎛

⎜
⎝α2Z

(
α2a
α2Z

)

(
i

imax

)2⎞

⎟
⎠R2

(
gi

best − yi
k, l

)

The error of the algorithm can be obtained by the following equation
(14)

e =

⃒
⃒
⃒
⃒
experimental value − expected value

expected value
×100

⃒
⃒
⃒
⃒ (14)

6. Numerical computation

To conduct this computational analysis, we collected data from a
total of 25 dengue patients. Among these patients, 20 were used to train
our model, while the remaining 5 were utilized for testing purposes. In
this section, we applied our proposed technique F-TLBO-APSO over a set
of dengue patients.
In this computational section, we initiated the process by applying

Sugeno’s fuzzy inference system to the patients’ data. This resulted in an
objective function, denoted as (using Eq. (13)):

y = f(x) = a0 + x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

Subsequently, our focus shifted towards optimizing the weights (a0,
a1, a2, a3, a4, a5, and a6) extracted from the objective function. We
accomplished this optimization through a two-step approach,

employing the TLBO algorithm followed by APSO. The iteration-by-
iteration process is presented as follows:
TLBO Process: first Iteration
Teaching phase:

y = f(x) = a0 + x1a1 + x2a2 + x3a3 + x4a4 + x5a5 + x6a6

Difference meanm,P,n = Rn

(
χm,Pbest,n − τFλm,n

)

χʹ
m,P,n = χm,P,n + Difference meanm,P,n

Take initial assumptions; TF: λF = 1. Random numbers: R1= 0.25, R2
= 0.43, R3= 0.53, R4= 0.34, R5 = 0.61 and R6= 0.15 and let us assume
that the expected value is 1.
By using this above equation, we got the new values for the weights

of objective function.
Learner Phase:
Peer to Peer learning: Interaction between the slow learners and

better learners in which peer to peer learning between the learners as
follows: (1&3) for learner 1, (2&3) for learner 2, (1&4) for learner 4,
(3&5) for learner 5 and (1&6) for learner 6.

χʹ́
m,A,n =

{
χʹ

m,A,n + Rn
(
χʹ

m,A,n − χʹ
m,B,n

)
, ifχʹ

total− A,n < χʹ
total− B,n

χʹ
m,A,n + Rn

(
χʹ

m,B,n − χʹ
m,A,n

)
, ifχʹ

total− B,n < χʹ
total− A,n

Assuming random numbers: R1 = 0.47, R2 = 0.33, R3 = 0.25, R4 =
0.76, R5 = 0.53, R6 = 0.16
By using these above equations, we got the new values for the

weights after Peer-to-Peer learning between the learners
Second Iteration: Repeating the whole process from Table 1 to

Table 6 for better result.
APSO Process:
In this section we applied APSO on the Objective function, y = a0 +

x1a1 + x2a2+ x3a3 + x4a4+ x5a5 + x6a6.
First iteration:
In which we have taken Population size = 6, Dimension of the

problem = 6, Max. Iteration = 3, Inertia weight (ω = 0.9), Correction
factor (α1&α2 = 1.5) Random numbers (R1 = 0.43, R2 = 0.18)

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

1 0.25 0.34 0.27 0.18 0.43 0.51
2 0.55 0.48 0.19 0.25 0.31 0.23
3 0.46 0.26 0.37 0.22 0.57 0.17
4 0.28 0.11 0.54 0.35 0.28 0.41
5 0.12 0.51 0.21 0.44 0.24 0.36
6 0.33 0.29 0.43 0.5 0.13 0.23

Now, update the velocities for 1st iteration:

ϑi+1
k,l =

(

ωz + (ωa − ωz)

(
i

imax

)2)

ϑi
k,l +

⎛

⎜
⎝α1Z

(
α1a
α1Z

)

(
i

imax

)2⎞

⎟
⎠

R1
(
Pi

bestk,l − yi
k, l

)
+

⎛

⎜
⎝α2Z

(
α2a
α2Z

)

(
i

imax

)2⎞

⎟
⎠R2

(
gi

best − yi
k, l

)

Table 1
Initial population.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.1 0.3 0.1 0.6 0.2 0.15 1.3125
2 0.5 0.2 0.7 0.2 0.1 0.4 1.5875
3 0.3 0.1 0.3 0.4 0.25 0.15 1.2375
4 0.25 0.5 0.15 0.3 0.2 0.6 1.54375
5 0.1 0.25 0.2 0.5 0.4 0.3 1.5375
6 0.25 0.7 0.25 0.1 0.3 0.5 1.69375
Mean 0.25 0.342 0.284 0.35 0.35 0.35 1.48542

Table 2
New values for the weights of objective function.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.0625 0.28194 0.00248 0.685 0.17438 0.12 1.2272375
2 0.5625 0.13894 0.92048 0.148 0.01338 0.4075 1.6354875
3 0.3125 − 0.00406 0.30848 0.417 0.25488 0.12 1.1534875
4 0.25 0.56794 0.07898 0.283 0.17438 0.63 1.51305
5 0.0625 0.21044 0.15548 0.551 0.49638 0.2925 1.5829875
6 0.25 0.85394 0.23198 0.015 0.33538 0.5225 1.7913
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where, R1 = 0.43, R2 = 0.18, ω = 0.9 andα1& α2 = 1.5
By using this above equation, we got the updated velocities for this

process.
By using the equation yi+1

k,l = yi
k,l + ϑi+1

k,l , we got the updated positions
for this process.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.379 0.552 0.397 0.708 0.6005 0.609 2.704125
2 0.941 0.605 0.763 0.479 0.4195 0.5395 2.889125
3 0.714 0.334 0.633 0.598 0.763 0.303 2.74725
4 0.5155 0.491 0.6765 0.642 0.4655 0.8475 2.892063
5 0.262 0.6685 0.416 0.869 0.5755 0.5835 2.919
6 0.5605 0.799 0.6505 0.631 0.4035 0.6125 3.000438

Table 3
Updated values of the weights after comparing Table 1 & 2.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.0625 0.28194 0.00248 0.685 0.17438 0.12 1.2272375
2 0.5 0.2 0.7 0.2 0.1 0.4 1.5875
3 0.3125 − 0.00406 0.30848 0.417 0.25488 0.12 1.1534875
4 0.25 0.56794 0.07898 0.283 0.17438 0.63 1.51305
5 0.1 0.25 0.2 0.5 0.4 0.3 1.5375
6 0.25 0.7 0.25 0.1 0.3 0.5 1.69375

Table 4
Initial population for peer-to-peer learning taken from Table 3.

a1 a2 a3 a4 a5 a6 Y = f(x) Peer to Peer learning

1 0.0625 0.28194 0.00248 0.685 0.17438 0.12 1.2272375 (1&3)
2 0.5 0.2 0.7 0.2 0.1 0.4 1.5875 (2&3)
3 0.3125 − 0.00406 0.30848 0.417 0.25488 0.12 1.1534875 ​
4 0.25 0.56794 0.07898 0.283 0.17438 0.63 1.51305 (1&4)
5 0.1 0.25 0.2 0.5 0.4 0.3 1.5375 (3&5)
6 0.25 0.7 0.25 0.1 0.3 0.5 1.69375 (1&6)

Table 5
New values for the weights after peer-to-peer learning.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.18 0.18756 0.07898 0.48132 0.21705 0.12 1.09241
2 0.411875 0.13266 0.60212 0.36492 0.182044 0.3552 1.613797
3 0.3125 − 0.00406 0.30848 0.417 0.25488 0.12 1.153488
4 0.161875 0.46366 0.05986 0.58852 0.17438 0.5484 1.621323
5 0.199875 0.16616 0.22712 0.43692 0.32309 0.2712 1.363843
6 0.161875 0.56204 0.18812 0.5446 0.2334 0.4392 1.808463

Table 6
Updated values for the weights after comparing Table 4 & 5.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.18 0.18756 0.07898 0.48132 0.21705 0.12 1.09241
2 0.5 0.2 0.7 0.2 0.1 0.4 1.5875
3 0.3125 − 0.00406 0.30848 0.417 0.25488 0.12 1.1534875
4 0.25 0.56794 0.07898 0.283 0.17438 0.63 1.51305
5 0.199875 0.16616 0.22712 0.43692 0.32309 0.2712 1.363843
6 0.25 0.7 0.25 0.1 0.3 0.5 1.69375

Table 7
Updated values for the Second Iteration.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.18 0.18756 0.07898 0.48132 0.21705 0.12 1.09241
2 0.04325 0.170458 0.75956 0.181518 − 0.01205 0.48073 1.356069
3 0.0100533 − 0.01573 0.270156 0.465902 0.220054 0.076761 0.982534
4 − 0.1731882 0.521034 0.051098 0.375452 0.143474 0.714006 1.383115
5 − 0.2318856 0.052672 0.231654 0.466214 0.286707 0.258051 1.079315
6 − 0.2330126 0.64496 0.214336 0.251927 0.262977 0.551571 1.562605

Table 8
Randomly chosen Initial velocities (ϑ ¼ L þ Rand*(U-L))

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

1 0.25 0.34 0.27 0.18 0.43 0.51
2 0.55 0.48 0.19 0.25 0.31 0.23
3 0.46 0.26 0.37 0.22 0.57 0.17
4 0.28 0.11 0.54 0.35 0.28 0.41
5 0.12 0.51 0.21 0.44 0.24 0.36
6 0.33 0.29 0.43 0.5 0.13 0.23
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Second Iteration:
Now in this iteration, update velocities for 2ndtime same as above
Third Iteration:
Now update velocities for 3rd iteration same as above
Apply TLBO on the Updated values of APSO:
In this section we have applied the TLBO on the updated values of

APSO with the help of peer-to-peer learning.
Learner Phase:
Peer to Peer learning: Interaction between the slow learners and

better learners in which peer to peer learning between the learners as
follows: (1&3) for learner 1, (2&1) for learner 2, (1&4) for learner 4,
(3&5) for learner 5 and (3&6) for learner 6. Assuming random numbers:
R1 = 0.42, R2 = 0.36, R3 = 0.25, R4 = 0.18, R5 = 0.45, R6 = 0.31

Repeating the whole process from Table 18 to Table 21 for better
result in further iterations:
The obtained updated values after ten iterations:
Tenth Iteration:

7. Comparative study

A comparative study between the existing approaches and proposed
approach is given in Fig. 6.
The Fig. 6. Shows that the estimated values obtained by different

techniques (i.e., TLBO, APSO, and F-TLBO-APSO) are 0.982534,
1.343522 and 1.000755 respectively. It can be easily observed that in
case of F-TLBO-APSO the obtained error is minimum as compare to
TLBO and APSO.
Verifying the results of a Fuzzy Hybrid Approach for Advanced

Fig. 3. Comparison between Iterations and their values.

Fig. 4. Comparison between Iterations and their values.

Fig. 5. Comparison between Iterations and their values.
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Teaching Learning Technique with Particle Swarm Optimization (F-
TLBO-APSO) for the diagnosis of Dengue disease against other published
works would typically involve a systematic comparison using key met-
rics such as accuracy, sensitivity, specificity and computational time (see
tab 23).
Algorithm Accuracy Sensitivity Specificity Computation

Time

F-TLBO-APSO
(Proposed Work)

96.5 % 95.8 % 97.2 % Moderate

SVM with PSO [41] 91.5 % 90.8 % 92.2 % Moderate
ANN with PSO [42] 93.4 % 92.8 % 94.2 % High
Hybrid GA-PSO
Approach [43]

94.1 % 93.5 % 94.6 % High

8. Conclusion and discussion

In this work, we developed the Fuzzy Hybrid Advanced Teaching
Learning Based Particle Swarm Optimization (F-TLBO-APSO) algorithm
and applied it to a real-life application. By merging the TLBO technique
with advanced APSO, we obtained optimized values and developed the
F-TLBO-APSO algorithm. We applied the TLBO approach to the updated
weights of APSO. To validate the performance of the proposed F-TLBO-
APSO algorithm, we utilized secondary data from dengue-infected pa-
tients. In the computation section, the following observations were
made:

i. Tabs 1-3 represent the teaching phase of the first iteration, and
Tabs 4-6 represent the learner phase of the first iteration.

ii. Tab 7 shows the updated values for the second iteration.

iii. Tabs 8-11 represent the randomly initialized velocity, initial
position, p-best position, and global best position for the first
iteration of the APSO process.

iv. Tabs 12-13 show the updated initial velocity and initial position
for the APSO process in the first iteration.

v. Tab 14 represents the updated values, Tab 15 represents the
updated positions for the second iteration, and Tab 16 represents
the updated values, and Tab 17 represents the updated positions
for the third iteration of the APSO process.

vi. Tab 18 and 20 represent the teaching phase of the first iteration,
where Tab 18 shows the updated values of weight taken from
APSO (acting as the initial population of the teaching phase). Tab
20 and 21 represent the learner phase of the first iteration by
merging TLBO with APSO.

vii. Tab 22 represents the updated values of the tenth iteration of the
hybrid process.

viii. Fig. 3, Fig. 4, and Fig. 5 depict the comparison between iterations
and their respective values.

ix. Tab 23, represents the comparative analysis through accuracy,
sensitivity, specificity and computation time.

The value 1.000755 obtained from the Table 22 is nearest to the
targeted value 1. On behalf of the estimated error obtained by

e =

⃒
⃒
⃒
⃒
experimental value − expected value

expected value
×100

⃒
⃒
⃒
⃒

=
1.000755 − 1

1
× 100 = 0.0755%.

The obtained results show that the proposed F-TLBO-PSO algorithm
is able to produce improved optimal results compared to TLBO and
APSO. It can be concluded that the proposed algorithm is applicable in
engineering filed, economics, industry, medicine and many more
(Tables 9, 10, 19).
Most recent PSO and TLBO based algorithms do not offer the

advanced learning strategies when the involved factors adjust their
weights during the process. The advantage of this proposed F-TLBO-PSO
in the medical area over the existing methodology is the hybridization of
two approaches (TLBO and PSO). It given more degree of freedom to
address the uncertainty present in the disease diagnostic problem.

Fig. 6. Comparative Study.

Table 9
Randomly chosen Initial positions (an).

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.1 0.3 0.1 0.6 0.2 0.15 1.3125
2 0.5 0.2 0.7 0.2 0.1 0.4 1.5875
3 0.3 0.1 0.3 0.4 0.25 0.15 1.2375
4 0.25 0.5 0.15 0.3 0.2 0.6 1.54375
5 0.1 0.25 0.2 0.5 0.4 0.3 1.5375
6 0.25 0.7 0.25 0.1 0.3 0.5 1.69375

Table 10
Pi(p-best) positions.

a1 a2 a3 a4 a5 a6

1 0.1 0.3 0.1 0.6 0.2 0.15
2 0.5 0.2 0.7 0.2 0.1 0.4
3 0.3 0.1 0.3 0.4 0.25 0.15
4 0.25 0.5 0.15 0.3 0.2 0.6
5 0.1 0.25 0.2 0.5 0.4 0.3
6 0.25 0.7 0.25 0.1 0.3 0.5

Table 11
Pg (g-best) global positions.

a2 a3 a4 a5 a6

0.3 0.1 0.3 0.4 0 0.25 0.15

Table 12
Updated velocities.

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

1 0.279 0.252 0.297 0.108 0.4005 0.459
2 0.441 0.405 0.063 0.279 0.3195 0.1395
3 0.414 0.234 0.333 0.198 0.513 0.153
4 0.2655 − 0.009 0.5265 0.342 0.2655 0.2475
5 0.162 0.4185 0.216 0.369 0.1755 0.2835
6 0.3105 0.099 0.4005 0.531 0.1035 0.1125

Table 13
Updated positions

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.379 0.552 0.397 0.708 0.6005 0.609 2.704125
2 0.941 0.605 0.763 0.479 0.4195 0.5395 2.889125
3 0.714 0.334 0.633 0.598 0.763 0.303 2.74725
4 0.5155 0.491 0.6765 0.642 0.4655 0.8475 2.892063
5 0.262 0.6685 0.416 0.869 0.5755 0.5835 2.919
6 0.5605 0.799 0.6505 0.631 0.4035 0.6125 3.000438
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Table 14
Updated velocities.

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

1 0.049815 − 0.05778 0.049545 − 0.05562 0.007493 − 0.00688
2 − 0.06062 − 0.03308 − 0.10895 0.049815 0.035708 − 0.06959
3 − 0.00621 − 0.00351 − 0.005 − 0.00297 − 0.0077 − 0.0023
4 0.009518 − 0.10787 0.032603 0.02187 0.009518 − 0.12521
5 0.05157 − 0.04678 0.02376 − 0.03254 − 0.04313 − 0.04475
6 0.008843 − 0.16349 0.007492 0.073035 − 0.01505 − 0.09619

Table 15
Updated positions.

a1 a2 a3 a4 a5 a6 Y = (x)

1 0.428815 0.49422 0.446545 0.65238 0.607993 0.602115 2.663001
2 0.880385 0.571925 0.654055 0.528815 0.455208 0.469908 2.775101
3 0.70779 0.33049 0.628005 0.59503 0.755305 0.300705 2.724604
4 0.525018 0.383135 0.709103 0.66387 0.475018 0.722288 2.78915
5 0.31357 0.621723 0.43976 0.836465 0.532368 0.538748 2.817278
6 0.569343 0.635515 0.657993 0.704035 0.388448 0.516313 2.85765

Table 16
Updated velocities.

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

1 − 0.20203 − 0.28371 − 0.2185 − 0.15199 − 0.35307 − 0.41988
2 − 0.45661 − 0.39708 − 0.16401 − 0.20203 − 0.25238 − 0.1941
3 − 0.37872 − 0.21406 − 0.30462 − 0.18113 − 0.46928 − 0.13996
4 − 0.22958 − 0.09815 − 0.44174 − 0.28626 − 0.22958 − 0.34608
5 − 0.095 − 0.42273 − 0.171 − 0.36415 − 0.20044 − 0.29923
6 − 0.27074 − 0.25013 − 0.35307 − 0.40596 − 0.10798 − 0.19599

Table 17
Updated positions.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.226783 0.210507 0.228047 0.500394 0.254923 0.182233 1.370031
2 0.423779 0.174846 0.490044 0.326783 0.202829 0.275809 1.491324
3 0.329073 0.116433 0.323385 0.413905 0.286025 0.160744 1.343522
4 0.295442 0.284988 0.267366 0.377612 0.245442 0.376203 1.474301
5 0.218566 0.198997 0.268764 0.472318 0.331932 0.239516 1.473731
6 0.298602 0.385382 0.304923 0.298074 0.280471 0.320318 1.540985

Table 18
Initial population taken from (Table 17) for using Teaching phase to optimize the values of weights in APSO process.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.226783 0.210507 0.228047 0.500394 0.254923 0.182233 1.370031
2 0.423779 0.174846 0.490044 0.326783 0.202829 0.275809 1.491324
3 0.329073 0.116433 0.323385 0.413905 0.286025 0.160744 1.343522
4 0.295442 0.284988 0.267366 0.377612 0.245442 0.376203 1.474301
5 0.218566 0.198997 0.268764 0.472318 0.331932 0.239516 1.473731
6 0.298602 0.385382 0.304923 0.298074 0.280471 0.320318 1.540985
Mean 0.3001913 0.228525 0.313755 0.398181 0.266937 0.259137 1.44954

Table 19
Updated values of the weights after comparing.

a1 a2 a3 a4 a5 a6 Y = f(x)

1 0.195951 0.20402 0.20662 0.518793 0.249516 0.158393 1.331627
2 0.423779 0.174846 0.490044 0.326783 0.202829 0.275809 1.491324
3 0.341204 0.076079 0.325792 0.416735 0.294615 0.130243 1.306294
4 0.295442 0.284988 0.267366 0.377612 0.245442 0.376203 1.474301
5 0.227468 0.198997 0.268764 0.472318 0.331932 0.239516 1.477069
6 0.298602 0.385382 0.304923 0.298074 0.280471 0.320318 1.540985
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9. Limitations and future directions of this work

While a Fuzzy Hybrid Approach with PSO and TLBO holds promise
for enhancing diagnostic accuracy and decision-making, it comes with
several limitations that must be addressed, including computational
complexity, data availability, and the need for extensive parameter
tuning. Additionally, real-world constraints in the medical field, such as
interpretability, reliability, and latency, pose significant challenges to its
successful implementation in dengue disease diagnosis. Issues with pa-
tient data quality and completeness including; missing entries, vari-
ability in collection methods is a major difficulty while doing such data
collection research work. The compatibility with doctor and concern
authority also been the crucial part of this study. A positive interaction
with patient is essential while doing such kind of data collection work.
Future aspects of this proposed technique i.e., Fuzzy Hybrid

Approach for Dengue Disease Diagnosis has the potential to significantly
improve medical diagnostics and patient outcomes. Key directions
include enhancing algorithm performance, expanding to other diseases,
leveraging real-time and edge computing, and addressing the clinical,
ethical, and regulatory challenges associated with artificial intelligence
in healthcare. Further research could also explore integrating this
approach into personalized and precision medicine, allowing for more
tailored and effective healthcare solutions. This work may be extended
over many engineering and technical fields.
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