
2025 – 3rd IEEE International Conference on Knowledge Engineering and Communication Systems (ICKECS – 2025), April 28 – 29, 2025

 979-8-3315-3701-2/25/$31.00 ©2025 IEEE

A Framework for Automated Software Testing
using Machine Learning and Artificial Intelligence

Ashish Nagila

Department of Computer Science and
Engineering,

IFTM University, Moradabad, India
ashishnagila01@gmail.com

Prof. Neelu Trivedi
Department of Electronics and
Communication Engineering,

IFTM University Moradabad, India
neelutrivedi27@gmail.com

Ritu Nagila
Department of Computer Science

and Engineering,
IFTM University, Moradabad, India

ritu.upadhayay01@gmail.com

Kanishk Trivedi
B. Tech 1st Year Student,

JSS University Noida, India
kanishktrivedi10@gmail.com

Sanjeev Bhardwaj

Department of Computer Science
and Engineering,

IFTM University Moradabad, India
sanjeevmbd@gmail.com

Jeetu Rani

Department of Computer Science
and Engineering,

IFTM University Moradabad, India
jeevanshi.chauhan@gmail.com

Abstract— In order to produce high-quality

applications while decreasing human labor and speeding
up application development, automatic software testing is
a crucial development methodology. This paper presents a
novel framework that uses machine learning and artificial
intelligence to improve automated software testing
through intelligent solutions. Through machine learning
techniques that perform test case selection and bug
prediction with programming code base change
monitoring, the framework achieves its optimization.
Testing processes benefit from automated learning
features that boost testing performance in real-time and
artificial intelligence-based models that enhance error
detection capabilities. When findings from contemporary
methodologies surpass those from traditional testing
methods, there are improvements in test coverage as well
as fault detection capabilities and overall efficiency. This
framework proposes a potential approach to the testing of
AI and machine learning that takes into account adaption
constraints as well as test scalability issues and automation
dependability.

Keywords— Automated Testing, Machine Learning,
Artificial Intelligence, Software Quality Assurance, Test
Case Optimization, Defect Detection, Intelligent Testing.

I. INTRODUCTION

Due to technological breakthroughs and increased
demands for software quality, software testing
methodologies have seen significant change in the last
several decades. In contrast to manual testing methods,
automated testing is a crucial component of today's
software development life cycle, allowing for lower
human error rates, shorter development cycles, and
cheaper costs. Because maintaining fixed structural
parameters and rising costs make standard automated
testing systems inflexible in complex environments and
unable to adjust to software dynamic, they provide
implementation issues. Due to current software testing
restrictions, modern approaches are required to maintain
effective testing procedures and increase efficiency [1-
2].

Modern software quality assurance processes are
being advanced by the application of machine learning
(ML) and artificial intelligence (AI), which significantly
alters how we do automated software testing. By

examining training data patterns that resemble human
learning techniques, system testing using machine
learning algorithms can identify flaws and select
appropriate test procedures [3]. The adoption of human-
like checking methods enables the development of
adaptive testing systems which acquire environmental
understanding. The mix of ML and AI technology offers
outstanding prospects for test automation in software
because they break regular testing constraints to provide
versatile intelligent solutions [4-8].

Across industries that run their businesses through
financial and healthcare services and transport and
entertainment operations the increasing complexity of
application software has triggered this evolutionary
trend. The growing architecture complexity combined
with distributed systems along with changing
requirements within modern applications delivers
substantial testing obstacles. Development lifecycle
shortening through agile and DevOps practices has
created testing schedule pressure that demands more
effective and faster testing approaches. Modern
development practices demand flexibility alongside
speed and ML and AI-based frameworks deliver these
capabilities through predictive analytics alongside
automated test generation and self-healing functionality
[9].

The promising applications of ML and AI in
automated software testing have yet to gain significant
adoption because their current implementation remains
at an early stage. The adoption of these technologies
remains limited because domain specialists are scarce,
and datasets are inadequate whereas developers struggle
to trust algorithmic capabilities [10-11]. Current
research approaches typically address isolated aspects of
testing while neglecting comprehensive approaches
which would work for different industry testing
requirements. Recent developments in AI and ML need
a comprehensive framework which provides intuitive
front ends alongside scalable structure and robust
implementation [12-14].

The new framework utilizes ML and AI technology
capabilities to provide an automated testing solution that
addresses diverse software system testing needs.

20
25

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 K

no
w

le
dg

e
En

gi
ne

er
in

g
an

d
C

om
m

un
ic

at
io

n
Sy

st
em

s (
IC

K
EC

S)
 |

97
9-

8-
33

15
-3

70
1-

2/
25

/$
31

.0
0

©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

K
EC

S6
57

00
.2

02
5.

11
03

48
63

Authorized licensed use limited to: Sharda University. Downloaded on July 03,2025 at 05:05:05 UTC from IEEE Xplore. Restrictions apply.

The proposed framework solves key testing challenges
by enabling test case development alongside fault
identification tools which optimize system performance
through adaptive automatic adjustments. The framework
transforms traditional testing methods by joining
optimum ML modeling capabilities with AI reasoning
methods to help organizations reach elevated quality
standards while minimizing their testing expenses.

This paper proceeds by examining the research
methodologies and outcomes together with the related
studies before presenting an explication of the work's
findings. The study develops existing field knowledge
through the deployment of innovative automated testing
techniques that yield effective results in real world
implementations [15].

Novelty and Contribution

Through its comprehensive system that integrates AI
and ML components to address important automated
software testing difficulties, the research presents
ground- breaking insights. Its cohesive framework
architecture, which preserves automation capabilities
across testing tasks from fault detection to test case
generation and testing adaptations within a single,
organized structure, makes this study particularly
noteworthy. Among the suggested framework's salient
aspects are:

• Dynamic Test Case Generation: The framework
operates through ML algorithms that automatically
produce test cases and establish their priorities
using historical datasets and user behaviour analysis
together with risk evaluations to optimize testing
results.

• Intelligent Fault Prediction: Through the
implementation of neural networks and decision
trees AI performs early detection of potential
defects that helps decrease both development costs
and effort needed for late-stage debugging.

• Self-Healing Capabilities: The adopted framework
uses adaptive healing systems which allow
automatic adjustment to program conduct or
ambientes changes and prevents manual
maintenance requirements for reduced testing
effort.

• Real-Time Feedback and Optimization: Real-time
analysis tools supply automatic information about
test outcomes that lets organizations always refine
their testing approach with improved resource
steering.

• This work produces two key outcomes. This work
solves current automated testing framework
problems through a solution which provides
scalability and smart adaptable functionality. The
empirical research demonstrates the effectiveness
of the method by performing extensive tests across
different software programs which show notable
improvements in fault identification along with test
execution efficiency and total software quality.

The practical results of this research enable
organizations to adopt Machine Learning and Artificial

Intelligence approaches more widely for software
testing applications. This proposed framework functions
as both an operational testing tool and an essential
standard for defining modern software quality assurance
practices.

Section 2 provides a review of relevant literature,
while Section 3 details the methodology proposed in
this study. Section 4 presents the results and their
applications, and Section 5 offers personal insights
and suggestions for future research.

II. RELATED WORKS

Most organizations use automated software
testing technology as an essential component of their
software quality assurance framework [16]. Research
teams combined with practical experts have
developed diverse methodologies to enhance the
speed and precision and expand capabilities of
testing systems. Traditional electronic testing
techniques that use script-based testing together with
rule-based systems supply valuable benefits yet their
dependence on rigid rules creates performance limits.
Software systems operate with advanced complexity
in a dynamic environment where traditional methods
increasingly demonstrate their limits, so developers
require adaptive and intelligent testing solutions [17].

In 2014 R. Just.et.al., D. Jalali.et.al., and M. D.
Ernst.et.al., [18] introduced Artificial intelligence
combined with machine learning technology has
enabled new patterns of automated software testing
methods. Machine learning algorithms function by
processing big dataset volumes to generate patterns
which help optimize test case selection while doing
forecasts of software defects and providing increased
test coverage. The identification of software system
components with high-risk usage has become
possible through data-driven approaches which guide
testing towards those critical areas. Testing
efficiency and costs decrease because of this
approach while critical application sections receive
complete validation.

Scientists optimize testing evaluation processes
using artificial intelligence methods that replicate
human-related decision processes alongside logical
thinking rules. The testing landscape today includes
AI-based solutions which automatically generate test
cases and detect anomalies and perform analysis to
determine root causes. The software platforms adapt
seamlessly to system evolution and design
modifications to deliver exceptional benefits for
organizations using agile and DevOps methods.
Natural language processing systems implemented
automatic tools to interpret requirements and produce
test cases which unify business staff with
programmers.

In 2014 L.Deng.et.al.[19] explained how
reinforcement learning generates substantial research
potential for automated testing framework
development. When testing systems run their entered
test strategies against actual software evaluation

Authorized licensed use limited to: Sharda University. Downloaded on July 03,2025 at 05:05:05 UTC from IEEE Xplore. Restrictions apply.

these systems develop improved test methodologies.
Research shows reinforcement learning produces
successful outcomes when operating in test
environments with unpredictable dynamics like
cloud- based systems and distributed platforms.
Through iterative testing strategy refinement
reinforcement learning-based systems produce
enhanced performance levels which exceed those of
conventional testing approaches.

The testing industry experiences benefits from
the ongoing relationship between artificial
intelligence and machine learning through the
implementation of evolutionary algorithms and
metaheuristic optimization strategies. Research
methodologies implement biological processes
including genetic evolution and swarm intelligence to
solve testing challenges. Genetic algorithms provide
optimized test case prioritization while particle
swarm optimization enables better testing parameter
adjustments which boost overall performance
outcomes. The discussed testing methods produce
exceptional results for large-scale systems because
exhaustive testing becomes impossible to execute.

Recent research has elevated its attention to test
non- functional elements including security features and
performance capabilities and system usability. The
application of AI and ML methods creates virtual
environments to observe dynamic situations which
reveal system weaknesses and bottlenecks in software
frameworks. Existential algorithms detect process
deviations through anomaly detection systems that
function as performance and security threat indicators.
Technological tools incorporating AI now help to test
user experience interactively so that developers get
specific feedback for better usability.

In 2012 S. Yoo.et.al. and M. Harman.et.al., [20]
introduced the development of automated testing has
received significant impact from cloud computing and
containerization technologies. Through machine
learning and artificial intelligence Cloud-based testing
platforms supply flexible cloud environments for on-
demand testing thus organizations can conduct their
application testing across multiple conditions and
configurations. The platforms leverage built-in
analytical tools to deliver instant test data analysis along
with best practice suggestions for improved testing
operations. Through AI- driven orchestration coupled
with containerization techniques organizations now
automate testing pipelines to achieve better consistency
and reliability in their test execution processes.

Numerous implementation challenges restrict the
advancement of Machine Learning Alongside
Artificial Intelligence in automated software testing.
Deploying machine learning models faces reliability
issues with data training as its main impediment.
Effective results using ML algorithms prove challenging
because of software testing datasets being extremely
sparse and domain specific and having uneven
distribution. Organizations encounter difficulties when
implementing AI models because they avoid crucial

testing decisions with systems which provide no visibility
into their internal processing. Methodological growth
coupled with academic-industrial collaborative work will
enable solutions to overcome these barriers.

 The evaluation and performance benchmarking of
testing frameworks powered by AI has emerged as the
focus in current research. Multiple research teams
prioritize the development of standardized performance
metrics to measure the stability capability of integration
frameworks. Current investors have set up result
reproducibility criteria to effectively evaluate and
compare different methods

Researchers actively work on developing research
which integrates artificial intelligence and machine
learning technology with automated software testing
methods. The advancement of technology will
dramatically transform software testing methods to
achieve enhanced precision along with innovative
adaptability and complete operational efficiency. AI
presents testing possibilities which require solutions to
existing challenges and implementation among new
technological domains such as blockchain and Internet
of Things and quantum computing systems. The
research develops existing automated software testing
understanding by proposing a complete ML and AI-
based framework that addresses fundamental
development challenges [21-23].

III. PROPOSED METHODOLOGY

A newly proposed framework employs both ML
along with AI to create automated software testing
solutions that solve problems related to test case
generation and predict faults and adapt software
environments. The methodology is structured into
five key stages: The method progresses through five
stages starting from Data Collection and
Preprocessing until it reaches Test Execution and
Optimization by incorporating Feature Extraction and
Test Case Generation and Fault Prediction. The
testing methodology executes sequential stages
which enhance efficiency as well as accuracy through
its flexible adaptable features promoting scalable
growth applications [24].

A. Data Collection and Preprocessing

The framework starts by obtaining data consisting
of software system logs and test case records and defect
reports. The performance of ML models depends on
processing raw data that frequently includes noise and
redundant sections.

Data preprocessing methods focus on three
procedures which include normalization together with
feature scaling and missing value management. Data
normalization establishes equal values for all features
leading to balanced treatment of ML algorithms. For
instance, given a dataset X, the normalization process is
defined as:

𝑋norm

= 𝑋−min(𝑋) max(𝑋)−min(𝑋) (1)

Authorized licensed use limited to: Sharda University. Downloaded on July 03,2025 at 05:05:05 UTC from IEEE Xplore. Restrictions apply.

.
where 𝑋norm is the normalized dataset, and min(𝑋)
and
max(𝑋) are the minimum and maximum values of
𝑋, respectively.

B. Feature Extraction

The extraction method recognizes the key elements
contained in software data that exhibit both fault
indicators and essential test needs. The Principal
Component Analysis (PCA) and other dimensional
methods help simplify computations by keeping
essential information without compromising system
stability [25].

Machine learning models accept input through
extracted features. The feature importance 𝐹𝑖 can be
calculated using entropy-based measures such as
Information Gain (𝐼𝐺):

(𝐹𝑖) = 𝐻(𝑌) − 𝐻(𝑌 I 𝐹𝑖) (2)

 where 𝐻(𝑌) is the entropy of the target variable 𝑌, and
(𝑌 I 𝐹𝑖) is the conditional entropy of 𝑌 given the feature

𝐹𝑖. Features with higher (𝐹𝑖) are prioritized during test
case generation.

C. Test Case Generation

The stage depends on generative models including
both Variational Autoencoders (VAEs) as well as
Generative Adversarial Networks (GANs) to make new
test cases. The model extracts test case generation
patterns from historic test case records to produce new
tests.

The generated test cases are evaluated for coverage
using a metric 𝐶𝑡, which represents the proportion of
software components tested:

 𝑐𝑡 =
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 (3)

Test coverage extent can be evaluated by analyzing

𝐶𝑡 values which demonstrate how well all-important
software components receive testing.

D. Fault Prediction

Software components likely to contain defects are
identified by supervised learning models which are
trained for fault prediction purposes. An analysis of
input features produces fault probability scores which
the model displays for every component. The fault
probability 𝑃𝑓 is computed as:

where 𝜎 is the sigmoid activation function, W is
the weight matrix, 𝑋 is the feature vector, and 𝑏 is the
bias term.

Components with high 𝑃𝑓 are prioritized for
testing, enabling targeted and efficient fault
detection.

E. Test Execution and Optimization

Let 𝜋∗ be the optimal policy by maximizing the
reward

𝑅, as below:

𝜋∗ = arg max[𝑅𝑡 I 𝜋] (5)
𝜋

where 𝑅𝑡 is the reward is received at time 𝑡, and
𝔼 denotes the expected value.

The optimization process also includes self-healing
mechanisms that adapt to changes in software
behavior or requirements. For example, if a new
feature is introduced, the framework automatically
generates additional test cases to validate its
functionality [26-27].

F. Flowchart of the Proposed Framework

The framework process can be depicted by this
flowchart in figure 1.

Fig 1: Proposed Methodology for Automated Software Testing Using

Machine Learning and Artificial Intelligence

 RESULTS AND DISCUSSIONS

Studies show that the automated software testing
framework with built-in artificial intelligence and
machine learning technology successfully raises the
effectiveness and efficiency of program testing
methods. Different real- world scenarios and software
applications proved the framework through tests
measuring its test case generation and fault prediction
performance along with execution optimization
capabilities. The analysis provides evidence of much
better test coverage alongside enhanced fault detection
capabilities and swifter testing performance in contrast
to conventional methods [28].

The proposed framework achieves its core
capability by generating quality test cases which reach
extensively throughout the target software components.
When applied to various software modules the AI-based

Authorized licensed use limited to: Sharda University. Downloaded on July 03,2025 at 05:05:05 UTC from IEEE Xplore. Restrictions apply.

generative models achieved superior performance over
traditional behavioral-based systems by demonstrating
enhanced coverage together with shorter execution
times. Figure 2 demonstrates how test cases generated
automatically exceeded the coverage extent of
components relative to manual test case selection. Using
the ratio between covered and total module components
scientists determined coverage levels which
demonstrated enhanced effectiveness specifically in
complex programs that traditional approaches fail to
handle adequately. Figure 2 diagram exhibits enhanced
coverage that exists across multiple software modules
comparison.

Fig. 2: Test Coverage Comparison

Historical defect data served to evaluate the
accurate prediction potential of the framework.
Machine-learning predictions about software
components' fault likelihood proved better at detecting
risky regions than conventional methods including static
code analysis and manual testing. Examining shows that
the model's forecast accurately tracked actual defect
occurrences when testing continued at subsequent
points. The predictive model's dependency analysis in
Figure 3 validated its ability to detect faults by showing
that components with higher predicted failure risks were
more likely to break. The ability to forecast future
faults provides testers with directions to examine
critical system areas which leads to major
performance gains for testing processes.

Fig. 3: Fault Prediction Accuracy

The proposed framework offers optimization
capabilities for test execution as a significant feature.
The system tested the reinforcement learning (RL)
functionality by running tests on moving software
platforms that needed automatic strategy adjustments
in real time [29]. The usage of RL methods generated
the results shown in Figure 3 for testing execution
performance enhancement. The comparison chart
presents data about timeframes that test execution
requires using standard testing practices along with
using the proposed RL-optimized system. The
system's results demonstrate significant
improvements in testing duration with benefits seen
in larger and complex applications because the RL
agent optimizes testing techniques by prioritizing
critical sections. Here are six simulation charts
visualizing different aspects of AI-based automated
software testing in figure 4.

Fig 4 Test Case Execution Time

Fig 4: Test Case Execution Time: comparison of
execution time between traditional and AI-driven
testing. Bug Detection Rate: Showing improvement
in bug detection using AI over time. Test Coverage
Percentage: Comparing different methods (manual,
automation, AI-based). False Positive Rate: AI vs.
traditional testing methods. Reduction in Test
Maintenance Effort: Before and after adoption of
AI. Model Accuracy in Predicting Failures:
Performance of different AI models predicting test
failures.

The framework underwent comparative assessment

against current testing tools to measure its positioning in
the market. A comparison between test coverage and
fault detection rates exists in Table 1 showing results
between the proposed framework and standard testing
approaches. The new framework achieves superior
results compared to conventional testing approaches by
detecting a higher ratio of faults while generating
improved coverage of program code. Supporting the
power of machine learning technologies combined with
AI for testing rests on their ability to process highly
complicated software behavior while analyzing
extensive datasets which surpass traditional rules-based
testing capabilities.

Test Coverage
Comparison

100
90
80
70
60
50
40
30
20
10

0

92
85 88 90 87

72

Module A Module B Module C Module D Module
E

Generated Test Cases Coverage (%)

Manually Selected Test Cases Coverage

70
77 80 75

Authorized licensed use limited to: Sharda University. Downloaded on July 03,2025 at 05:05:05 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: COMPARISON OF TEST COVERAGE AND FAULT
DETECTION RATES

Testing Method Test Coverage (%) Fault Detection
Rate (%)

Traditional 65% 70%

Proposed Framework 85% 92%

The second comparison Table 2 highlights the time
efficiency of the proposed framework versus traditional
manual testing. According to table data, testing cycle
completion durations demonstrate significant time-
saving benefits of utilizing the AI-powered framework.
Development teams may complete more thorough
testing cycles in less time blocks thanks to the
suggested framework's 30% testing time reduction.

TABLE 2: COMPARISON OF TEST EXECUTION TIME

Testing Method Time Taken (Hours)

Traditional 15

Proposed Framework 10.5

This framework's capacity to yield measurable
outcomes led to the emergence of improved operational
adaptivity as an extra advantage. The artificially
intelligent testing system showed that it could
automatically manage new software features and easily
adjust to changing system requirements. Agile
development environments benefit greatly from elastic
capabilities since project needs are typically subject to
frequent and unpredictable changes. This framework
speeds up test case creation while predicting component
defects to enable developers to maintain software quality
over continuous development cycles.

The framework minimizes testing time frames while
improving fault identification and coverage, which
results in increased testing performance. Integrating
machine learning and artificial intelligence into software
testing results in significant gains since it produces
accurate testing while cutting down on testing life cycle
costs and duration. The method under study shows
promise as a viable strategy for deploying various
software platforms, such as web services and mobile
applications, which adjust to new development
challenges in modern systems.

Future research must focus on developing
frameworks with simpler network models and better
learning datasets. To achieve superior performance,
machine learning algorithms are positioned behind an
impenetrable "black box" structure that impedes the
transparency of decision- making. Clear models and
higher-quality training datasets are essential for the
effective use of this framework in the industry.

IV. CONCLUSION

A system that produced test cases for defect
prediction more efficiently with enhanced adaptation
features was developed by a testing framework that
integrated AI and ML automation. The research
findings demonstrate automated artificial intelligence
frameworks in contemporary software development
systems, together with enhanced test coverage efficacy

and more effective defect detection capabilities. Future
research will concentrate on three improvement goals to
advance the framework through improvements to AI
algorithms, scalability gains, and lower computational
costs. For a comprehensive framework to become the
industry standard for effectively managing software
testing operations under a variety of complicated
settings, these problem areas must be further developed.

REFERENCES
[1] Y. Jia and M. Harman, "An analysis and survey of the

development of mutation testing," IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 649–678, 2011, doi: 10.1109/TSE.2010.62.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, "Is mutation an
appropriate tool for testing experiments?" in Proc. 27th Int.
Conf. Softw. Eng., 2005, pp. 402–411, doi:
10.1145/1062455.1062530.

[3] T. Dias, A. Batista, E. Maia, and I. Praça, "TestLab: An
intelligent automated software testing framework," arXiv
preprint arXiv:2306.03602, 2023.

[4] D. Lo and S.-C. Khoo, "SMArTIC: Towards building an
accurate, robust, and scalable specification miner," in Proc.
14th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2006, pp.
265–275, doi: 10.1145/1181775.1181816.

[5] G. Fraser and A. Arcuri, "Evosuite: Automatic test suite
generation for object-oriented software," in Proc. 19th ACM
SIGSOFT Symp. Found. Softw. Eng., 2011, pp. 416–419, doi:
10.1145/2025113.2025179.

[6] P. Tonella, "Evolutionary testing of classes," in Proc. ACM
SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA), 2004, pp. 119–
128, doi: 10.1145/1007512.1007529.

[7] S. Elbaum, A. G. Malishevsky, and G. Rothermel, "Test case
prioritization: A family of empirical studies," IEEE Trans.
Softw. Eng., vol. 28, no. 2, pp. 159–182, 2002, doi:
10.1109/32.988497.

[8] C. S. Pasareanu and W. Visser, "A survey of new trends in
symbolic execution for software testing and analysis," Int. J.
Softw. Tools Technol. Transf., vol. 11, no. 4, pp. 339–353,
2009, doi: 10.1007/s10009-009-0118-1.

[9] M. Harman and J. A. Clark, "Metrics are fitness functions too,"
in Proc. 10th Int. Symp. Softw. Metrics (METRICS), 2004, pp.
58–69, doi: 10.1109/METRICS.2004.1355893.

[10] L. Briand, Y. Labiche, and H. Sun, "Investigating the use of
analysis contracts to improve the testability of object-oriented
code," Softw. Pract. Exp., vol. 33, no. 7, pp. 637–672, 2003,
doi: 10.1002/spe.524.

[11] A. Fontes and G. Gay, "The integration of machine learning
into automated test generation: A systematic mapping study,"
arXiv preprint arXiv:2206.10210, 2022.

[12] A. Arcuri and L. Briand, "A practical guide for using statistical
tests to assess randomized algorithms in software engineering,"
in Proc. 33rd Int. Conf. Softw. Eng. (ICSE), 2011, pp. 1–10,
doi: 10.1145/1985793.1985795.

[13] B. Kitchenham, "Procedures for performing systematic
reviews,"
Keele Univ. Tech. Rep., vol. 33, no. 2004, pp. 1–26, 2004.

[14] Z. Chen, B. Xu, Z. Yang, and J. Zhao, "A novel approach
for web application testing by mining input validation
patterns," in Proc. 6th Int. Conf. Qual. Softw. (QSIC),
2006, pp. 289–296, doi: 10.1109/QSIC.2006.26.

[15] S. Mukherjee and N. Sharma, "Intrusion detection using
naive Bayes classifier with feature reduction," Procedia
Technol., vol. 4,
pp. 119–128, 2012, doi: 10.1016/j.protcy.2012.05.017.

[16] L. Harries, R. S. Clarke, T. Chapman, S. V. P. L. N.
Nallamalli, L. Ozgur, S. Jain, A. Leung, S. Lim, A.
Dietrich, J. M. Hernández- Lobato, T. Ellis, C. Zhang, and
K. Ciosek, "DRIFT: Deep reinforcement learning for
functional software testing," arXiv preprint
arXiv:2007.08220, 2020.

[17] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer
Software.
Wiley, 1999

[18] R. Just, D. Jalali, and M. D. Ernst, "Defects4J: A database
of existing faults to enable controlled testing studies for

Authorized licensed use limited to: Sharda University. Downloaded on July 03,2025 at 05:05:05 UTC from IEEE Xplore. Restrictions apply.

Java programs," in Proc. 2014 Int. Symp. Softw. Test. Anal.
(ISSTA), 2014, pp. 437–440, doi:
10.1145/2610384.2628055.

[19] L. Deng and D. Yu, "Deep learning: Methods and
applications," Found. Trends Signal Process., vol. 7, no. 3–
4, pp. 197–387, 2014, doi: 10.1561/2000000039.

[20] S. Yoo and M. Harman, "Regression testing minimization,
selection and prioritization: A survey," Softw. Test. Verif.
Reliab., vol. 22, no. 2, pp. 67–120, 2012, doi:
10.1002/stvr.430.

[21] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
"Test case prioritization: An empirical study," in Proc.
IEEE Int. Conf. Softw. Maint. (ICSM), 1999, pp. 179–188,
doi: 10.1109/ICSM.1999.792604.

[22] P. McMinn, "Search-based software test data generation: A
survey," Softw. Test. Verif. Reliab., vol. 14, no. 2, pp. 105–
156, 2004, doi: 10.1002/stvr.294.

[23] T. Xie, "Augmenting automatically generated unit-test
suites with regression oracle checking," in Proc. 20th
IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), 2005, pp.
234–243, doi: 10.1145/1101908.1101948.

[24] H. Do, S. Elbaum, and G. Rothermel, "Supporting

controlled experimentation with testing techniques: An
infrastructure and its potential impact," Empir. Softw. Eng.,
vol. 10, no. 4, pp. 405–435, 2005, doi: 10.1007/s10664-
005-3861-2.

[25] L. Williams, E. M. Maximilien, and M. Vouk, "Test-driven
development as a defect-reduction practice," in Proc. 14th
Int. Symp. Softw. Reliab. Eng. (ISSRE), 2003, pp. 34–45,
doi: 10.1109/ISSRE.2003.1251026.

[26] A. Bertolino, "Software testing research: Achievements,
challenges, dreams," in Proc. 28th Int. Conf. Softw. Eng.
(ICSE), 2006, pp. 85–103, doi: 10.1145/1134285.1134302.

[27] H. Yin, D. Song, M. Egele, and D. Wagner, "Panorama:
Capturing system-wide information flow for malware
detection and analysis," in Proc. 14th ACM Conf. Comput.
Commun. Secur. (CCS), 2007,
pp. 116–127, doi: 10.1145/1315245.1315260.

[28] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.
Grünbacher, Eds., Value-Based Software Engineering.
Springer, 2006, doi: 10.1007/3-540-29263-2.

[29] C.-Y. Tsai and G. W. Taylor, "DeepRNG: Towards deep
reinforcement learning-assisted generative testing of
software," arXiv prep

[30] rint arXiv:2201.12602, 2022.

Authorized licensed use limited to: Sharda University. Downloaded on July 03,2025 at 05:05:05 UTC from IEEE Xplore. Restrictions apply.

