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Abstract 

In this research article, the numerical 

solution of fifth order boundary value 

problems (BVPs) is presented. For this 

purpose, application of the Haar wavelet 

method has been discussed. In this method, 

space derivative terms are approximated 

using truncated Haar wavelet series. The 

present method is tested on fifth order linear 

and nonlinear BVPs. The accuracy of the 

proposed technique is demonstrated 

through two numerical examples, taken 

from existing literature. The present 

approximate results are shown through 

tables and figures. The numerical solutions 

demonstrate the high accuracy of the 

present method. 
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1. INTRODUCTION 

BVPs (BVPs) of higher order play a 

significant role in various fields of science 

and engineering, particularly when 

modeling complex physical phenomena. 

Among these, fifth-order BVPs arise in a 

range of applications, including fluid 

mechanics, elasticity theory, and the 

analysis of nonlinear dynamical systems. 

These equations also arise in the 

mathematical modelling of the viscoelastic 

flows and other branches of mathematical, 

physical and engineering sciences [1-4]. 

Due to the complexity and the nature of the 

underlying differential equations, obtaining 

accurate and reliable solutions for these 

problems poses a significant challenge. 

Over the past few decades, numerous 

analytical and numerical techniques have 

been developed to address fifth-order 

BVPs. Classical methods such as the finite 

difference method (FDM), finite element 

method (FEM), and variational techniques 
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have been widely used to find approximate 

solutions [5-6]. However, these traditional 

approaches may suffer from computational 

inefficiency or lack of accuracy when 

dealing with highly nonlinear or complex 

boundary conditions. Recent advancements 

in numerical techniques have introduced 

more robust methods to solve fifth-order 

BVPs. B-spline method [1], and variational 

iteration methods [6] have gained 

prominence due to their ability to handle 

complex boundary conditions and 

nonlinearity effectively.  

Over the past two decades, wavelets have 

gained significant attention in the field of 

numerical estimation and have found 

numerous applications in estimation theory 

[7, 8]. The literature reflects a wealth of 

research utilizing wavelets for solving 

ordinary differential equations (ODEs), 

integral equations (IEs), PDEs, numerical 

integration (NI), and fractional partial 

differential equations (FPDEs) [9-12]. 

Among the various types of wavelets, the 

Haar Wavelet (HW) has received particular 

interest due to its simplicity and 

effectiveness in solving integral and 

differential equations [13-15]. Effective 

compression and analysis are made possible 

by the Haar wavelet approach, which is 

useful in everyday applications like image 

processing, biomedical signal processing, 

face recognition, and fingerprint 

compression. It excels in solving intricate 

mathematical problems in numerical 

analysis, especially in everyday life, its 

numerous uses highlight how important it is 

to the advancement of technology and 

computing efficiency [16]. Because they 

make multiresolution analysis and sparse 

signal representation possible, Haar 

wavelets are essential to numerical 

solutions. They are useful tools for solving 

differential equations, filtering noise, and 

handling a variety of numerical problems 

because of their localization qualities in 

time and frequency, flexibility in handling 

irregular grids, and compression efficiency. 

In summary, Haar wavelets help numerical 

solutions be more accurate and 

computationally efficient. The simplest 

wavelet family with a compact support is 

the Haar wavelet family, which consists of 

orthonormal wavelets distinguished by 

their piecewise constant functions. This 

simplicity has been useful in solving 

higher-order differential and integral 

equations and allows for effective 

numerical approximations [17, 18]. 

However, using Haar wavelets directly to 

differential equations presents difficulties 

due to their piecewise constant character. 

Chen and Hsiao [19, 20] presented an 

integrated strategy to address issue, and 

Lepik [21, 22] expanded on it. 
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The fundamental idea behind this method is 

to convert a differential equation into an 

algebraic one. The collocation points are 

used to the resulting algebraic equations in 

order to estimate the solution of the 

differential equation. One of the main 

benefits of the Haar wavelet transform is 

that, in comparison to other current 

techniques, it produces a sparse matrix 

representation, which increases efficiency. 

This paper aims to explore the application 

of wavelet-based methods for solving fifth-

order BVPs. The proposed approach not 

only improves computational efficiency but 

also maintains a high degree of accuracy, as 

demonstrated through several numerical 

examples drawn from existing literature. 

The general fifth order boundary value 

problem (BVP) under consideration are as 

follows: 

𝑢(𝑣)(𝑥)

= 𝑓 (𝑥, 𝑢(𝑥), 𝑢′(𝑥), 𝑢′′(𝑥), 𝑢′′′(𝑥), 𝑢(𝑖𝑣)(𝑥)) ,                       𝑥

∈ [𝑎, 𝑏].                      (1)  

with boundary conditions 

𝑢(𝑎) = 𝐴1, 𝑢′(𝑎) = 𝐴2, 𝑢′′(𝑎) = 𝐴3,  

𝑢(𝑏) = 𝐵1, , 𝑢′(𝑏) = 𝐵2,                                                   

(2) 

where, 𝑢(𝑥) and 𝑓(𝑥) are continuous 

functions defined in the interval 𝑥 ∈ [𝑎, 𝑏], 

and 𝐴1, 𝐴2, 𝐴3, 𝐵1 and 𝐵2 are finite real 

constants. Generally, this type of fifth order 

BVPs arises in the mathematical modeling 

of viscoelastic flows and other branches of 

mathematical, physical and engineering 

sciences. 

The rest of the paper is organized as 

follows: In section 2, basic preliminaries of 

Haar wavelets are given. In section 3, 

general formulation of the present 

numerical method is given. Section 4 

presents convergence analysis of Haar 

wavelet. Next, two numerical problems for 

comparison with current methods are 

presented just before the last section. 

Lastly, a conclusion is provided in the final 

section. 

2. HAAR WAVELETS 

In the area of approximation theory, Haar 

wavelets has several uses. Because of their 

piecewise constant character, these 

wavelets are very good at capturing abrupt 

discontinuities or transitions in functions. 

Due to this feature, they are helpful in 

situations where there are discontinuous 

solutions, like in signal processing or 

specific differential equations. The sparse 

representation of these wavelets allows 

them to express functions with fewer 

coefficients more effectively than other 

bases, such as polynomial or Fourier bases. 

This can result in methods that are more 

computationally efficient, particularly 
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when handling high-dimensional problems 

or big datasets. 

Additionally, because of piecewise constant 

nature of Haar wavelets, Haar wavelet-

based method has strong numerical 

stability, is simple to implement, and 

provides a practical method of handling 

boundary conditions. It is important to 

remember that, despite these benefits, 

efficacy of Haar wavelet method varies 

depending on the specific characteristics of 

the problem. The particulars of the problem, 

the computational resources at hand, and 

the trade-offs between accuracy, efficiency, 

and implementation complexity are 

frequently taken into consideration while 

selecting a solution. 

The family of Haar wavelets over [0,1] is 

given by 

ℎ𝑖(𝜑) = {
1 𝜑 ∈ [𝜑1, 𝜑2),

−1 𝜑 ∈ [𝜑2, 𝜑3),
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                𝑖 =

2,3, . ..                                                                   

(3)

 
where, 

𝜑1 =
𝑘

𝑚
,            𝜑2 =

𝑘+0.5

𝑚
,              𝜑3 =

𝑘+1

𝑚
.
 

Here, integer 𝑚 = 2𝑝, 𝑝 = 0,1, . . . , 𝐽, where 

𝐽 is the maximum resolution level and 

translation parameter 𝑘 = 0,1, . . . , 𝑚 − 1. 

The relationship between i, 𝑚 and k is given 

by 𝑖 = 𝑚 + 𝑘 + 1 such that 2 ≤ 𝑖 ≤ 2𝑀, 

where 𝑀 = 2𝐽.  

The Haar wavelet scaling functions can be 

described as  

ℎ1(𝜑) = {
1 𝜑 ∈ [0,1)

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.
                                                                                                       

(4) 

An infinite sum of Haar wavelets can be 

used to express any sparsely integrable 

function in the interval (0,1) as follows:   

𝑓(𝜑)

=∑𝑎𝑖ℎ𝑖(𝜑)

∞

𝑖=1

.                                                                                                                            (5) 

If 𝑓(𝜑) is piecewise constant or roughly 

piecewise constant across each subinterval, 

the aforementioned series ends at finite 

term given as follows: 

𝑓(𝜑)

=∑𝑎𝑖ℎ𝑖(𝜑)

𝑀

𝑖=1

.                                                                                                                             (6) 

The successive integrals of Haar wavelet 

functions are  

𝑝𝑖,1(𝜑)

= ∫ ℎ𝑖(𝜑)𝑑𝜑
𝑥

0

,                                                                                                                         (7) 

and 
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𝑝𝑖,𝑛+1(𝜑) = ∫ 𝑝𝑖,𝑛(𝜑)𝑑𝜑
𝑥

0
,

𝐶𝑖,𝑛 = ∫ 𝑝𝑖,𝑛
1

0
(𝜑)𝑑𝜑

} , 𝑛 = 1,2,3, . ..

   
(8) 

 

Using expressions (7) and (8), nth integral 

of Haar wavelet functions is given by 

𝑝1,𝑛(𝜑) =
𝜑𝑛

𝑛!
, 𝑛 =

1,2,3, ..                                                                                                                    

(9) 

and 

𝑝𝑖,𝑛(𝜑) =

{
 
 

 
 

(𝑥−𝜑1)
𝑛

𝑛!
, 𝑥 ∈ [𝜑1, 𝜑2)

(𝑥−𝜑1)
𝑛

𝑛!
− 2

(𝑥−𝜑2)
𝑛

𝑛!
, 𝑥 ∈ [𝜑2, 𝜑3)

(𝑥−𝜑1)
𝑛

𝑛!
− 2

(𝑥−𝜑2)
𝑛

𝑛!
+
(𝑥−𝜑3)

𝑛

𝑛!
, 𝑥 ∈ [𝜑3, 1)

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

𝑖 =

2,3, . . . . . ; 𝑛 = 1,2,3, . ..         (10) 

3. HAAR WAVELET METHOD FOR 

SOLVING FIFTH ORDER 

DIFFERENTIAL EQUATIONS 

Here, the present method has been 

developed which is based on Haar wavelet 

method. The space derivatives in equation 

(1) are discretized using Haar wavelet 

series which is presented in the following 

manner: 

𝑢(𝑣)(𝑥)

=∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

.                                                                                                                      (11) 

Taking integration and using the boundary 

conditions with a=0, b=1, the space 

derivatives 

𝑢(𝑣)(𝑥), 𝑢(𝑖𝑣)(𝑥), 𝑢′′′(𝑥), 𝑢′′(𝑥), 𝑢′(𝑥) 

and 𝑢(𝑥) are obtained which are given as: 

𝑢(𝑖𝑣)(𝑥)

= 𝑢(𝑖𝑣)(0)

+∑𝑎𝑖𝑝𝑖,1(𝑥)

2𝑀

𝑖=1

,                                                                                              (12) 

𝑢′′′(𝑥)

= 𝑢′′′(0) + 𝑥𝑢(𝑖𝑣)(0)

+∑𝑎𝑖𝑝𝑖,2(𝑥)

2𝑀

𝑖=1

,                                                                            (13) 

𝑢′′(𝑥)

= 𝑢′′(0) + 𝑥𝑢′′′(0) +
𝑥2

2
𝑢(𝑖𝑣)(0)

+∑𝑎𝑖𝑝𝑖,3(𝑥)

2𝑀

𝑖=1

,                                                      (14) 

𝑢′(𝑥)

= 𝑢′(0) + 𝑥𝑢′′(0) +
𝑥2

2
𝑢′′′(0)

+
𝑥3

6
𝑢(𝑖𝑣)(0)

+∑𝑎𝑖𝑝𝑖,4(𝑥)

2𝑀

𝑖=1

,                                  (15) 
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𝑢(𝑥)

= 𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2
𝑢′′(0)

+
𝑥3

6
𝑢′′′(0) +

𝑥4

24
𝑢(𝑖𝑣)(0)

+∑𝑎𝑖𝑝𝑖,5(𝑥)

2𝑀

𝑖=1

,                (16) 

where, 𝑝𝑖,1, 𝑝𝑖,2, 𝑝𝑖,3, 𝑝𝑖,4 and 𝑝𝑖,5 are 

obtained using equations (9) and (10) 

respectively.  

The value of unknown terms 𝑢′′′(0) and 

𝑢(𝑖𝑣)(0) are calculated by integrating 

equations (14) and (15) from 0 and 1 and is 

given by 

𝑢′′′(0)

= 24(𝑢(1) − 𝑢(0)) − 18𝑢′(0) − 6𝑢′(1)

− 6𝑢′′(0) − 24∑𝑎𝑖𝑝𝑖,5(1)

2𝑀

𝑖=1

+ 6∑𝑎𝑖𝑝𝑖,4(1)

2𝑀

𝑖=1

,                                                                                                    (17) 

𝑢(𝑖𝑣)(0)

= 72(−𝑢(1) + 𝑢(0)) + 48𝑢′(0)

+ 24𝑢′(1) + 12𝑢′′(0) − 24∑𝑎𝑖𝑝𝑖,4(1)

2𝑀

𝑖=1

+ 72∑𝑎𝑖𝑝𝑖,5(1)

2𝑀

𝑖=1

.                                                                                                  (18) 

These values are used to create a system of 

equations, the solution of which provides 

the Haar coefficients, by substituting them 

in the expressions (12), (13), (14), (15), 

and (16). The degree of resolution of Haar 

wavelets is inversely related to the error 

bound, as demonstrated by Babolian and 

Shahsavaran [17]. When M is increased, 

this guarantees that the Haar wavelet 

approximation will converge. 

4. CONVERGENCE THEOREM 

Theorem 1 Assume that 𝑔(𝑥) = 𝑢𝑛(𝑥) ∈

𝐿2(𝑅) is a continuous function on [0, 1] 

with a bounded first derivative: 

∀ 𝑥 ∈ [0, 1], ∃ 𝜎: |𝑔′(𝑥)| ≤ 𝜎,      𝜎

≥ 2. 

Then, the Haar wavelet will be convergent, 

i.e.,|𝐸𝑚| vanishes as J goes to infinity, 

according to the method suggested in [23]. 

This convergence is of order two: 

‖𝐸𝑚‖2 = 𝑂 [(
1

2𝐽+1
)
2

], 

𝑤ℎ𝑒𝑟𝑒,  

𝐸𝑚 = 𝑔(𝑥) − 𝑔𝑀(𝑥),     𝑔𝑀(𝑥)

=∑𝑎𝑖ℎ𝑖(𝑥)

2𝑀

𝑖=1

. 

Proof For proof, see [23]. 

5. NUMERICAL EXAMPLES 

To evaluate the effectiveness of the 

method, both linear and nonlinear fifth 

order BVPs are considered. The accuracy 

of the method has been assessed by 

evaluating the absolute error, maximum 



Utilitas Mathematica 

ISSN 0315-3681 Volume 122, 2025 

Page | 1398  
 

absolute errors. These errors will be 

computed using a varying number of 

collocation points. Here, MATLAB 

R2015a software has been used for 

numerical computation. 

The absolute error, maximum absolute 

error and 𝐿2error norm will be denoted by  

Absolute error  ‖𝑒𝐽‖ = |𝑢(𝑥𝑖) − 𝑢𝐽(𝑥𝑖)|, 

𝐿∞ = 𝑚𝑎𝑥
𝑖
|𝑢(𝑥𝑖) − 𝑢𝐽(𝑥𝑖)|, 

Example 5.1: Consider the linear boundary 

value problem  

𝑢𝑣(𝑥) − 𝑢(𝑥) = −15𝑒𝑥 − 10𝑥𝑒𝑥

= 0,     0 < 𝑥 < 1. 

with boundary conditions 

𝑢(0) = 0, 𝑢′(0) = 1, 𝑢′′(0) = 0, 𝑢(1) =

1, 𝑢′(1) = −𝑒. 

The exact solution for the above example is 

𝑥(1 − 𝑥)𝑒𝑥. 

The proposed method is applied to this 

example, and the corresponding numerical 

results are displayed in both tabular and 

graphical formats. To evaluate the accuracy, 

absolute and maximum absolute errors are 

computed for various numbers of 

collocation points. For the given test 

problem, the maximum absolute error has 

been effectively minimized to the order of 

10-8, which is generally acceptable for 

practical applications. It is worth noting that 

even greater accuracy can be attained by 

increasing the number of collocation points; 

however, this improvement comes with a 

trade-off in terms of higher computational 

cost and time. A key advantage of the Haar 

wavelet method is its ability to yield 

increasingly accurate solutions as the 

number of collocation points rises. 

Table 1  

Comparison of absolute error in results obtained by present method and other method at J=4 

for Example 1 

x Exact Solution Variational 

Iteration 

Method [6] 

Sixth degree B-

Spline Method 

[1] 

Haar Wavelet 

Method 

0.0 0.0000 0.0000 0.0000 0.0000 

0.1 0.0995 0.188E-4 -8.0E-3 1.58E-08  

0.2 0.1954 1.077E-4 -1.2E-3 1.02E-07  

0.2 0.2835 2.477E-4 -5.0E-3 2.70E-07  
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0.4 0.3580 3.729E-4 3.0E-3 4.82E-07  

0.5 0.4122 4.202E-4 8.0E-3 6.68E-07  

0.6 0.4373 3.643E-4 6.0E-3 7.56E-07  

0.7 0.4229 2.364E-4 -0.000 6.91E-07  

0.8 0.3561 1.158E-4 9.0E-3 4.70E-07  

0.9 0.2214 0.876E-4 -9.0E-3 1.71E-07  

1.0 0.0000 0.0000 0.0000 0.0000 

 

Table 2  

Maximum absolute error for Example 1 at different number of collocation points 

J 2M 𝐿∞ 

1 4 4.6102E-05 

2 8 1.1612E-05 

3 16 3.0085E-06 

4 32 7.5712E-07 

5 64 1.8937E-07 

6 128 4.7370E-08 

7 256 1.1844E-08 
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Figure 1. Comparison of the exact solutions and numerical solutions of Example 1 

Example 5.2: Consider the no-linear boundary value problem  

𝑢𝑣(𝑥) = 𝑒−𝑥𝑢2(𝑥),     0 < 𝑥 < 1. 

with boundary conditions 

𝑢(0) = 1, 𝑢′(0) = 1, 𝑢′′(0) = 1, 𝑢(1) = 𝑒, 𝑢′(1) = 𝑒. 

The exact solution for the above example is 𝑒𝑥. 

In this case study, the proposed method has been applied to solve the given problem. To address 

the nonlinear nature of the equation, the quasilinearization technique is adopted to convert it 

into a linear form. The accuracy of the obtained solution is examined by calculating the absolute 

error and the maximum absolute error for different numbers of collocation points. The 

computed results are illustrated through tables and graphs. From the table, it is evident that the 

maximum absolute error decreases as the number of collocation points increases, 

demonstrating that higher numbers of collocation points contribute to greater accuracy. 

Additionally, Figure 2 visually compares the exact and numerical solutions for various values 

of 𝑥. 
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Table 3 

Comparison of absolute error in results obtained by present method and other method at J=4 

for Example 2 

x Exact Solution Variational 

Iteration 

Method [6] 

Sixth degree B-

Spline Method 

[1] 

Haar Wavelet 

Method 

0.0 1.0000 0.0000 0.0000 0.0000 

0.1 1.1052 0.0000 -7.0E-4 3.92E-10  

0.2 1.2214 1.0E-5 -7.2E-4 2.53E-09  

0.2 1.3499 1.0E-5 4.1E-4 6.65E-09  

0.4 1.4918 1.0E-4 4.6E-4 1.18E-08  

0.5 1.6487 3.2E-4 4.7E-4 1.63E-08  

0.6 1.8221 3.6E-4 4.8E-4 1.83E-08  

0.7 2.0138 -1.4E-4 3.9E-4 1.66E-08  

0.8 2.2255 -3.1E-4 3.1E-4 1.12E-08  

0.9 2.4596 -5.8E-4 1.6E-4 4.07E-09  

1.0 2.7183 -9.9E-5 0.0000 0.0000 

 

Table 4 Maximum absolute error for Example 2 at different number of collocation points 

J 2M 𝐿∞ 

1 4 1.0564E-06 

2 8 2.7781E-07 

3 16 7.2690E-08 

4 32 1.8326E-08 

5 64 4.5864E-09 

6 128 1.1475E-09 

7 256 2.8692E-10 
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Figure 2. Comparison of the exact solution with the numerical solution of Example 2 

6. CONCLUSION 

This research paper presents a numerical 

technique based on the Haar wavelet 

method for solving both linear and 

nonlinear fifth-order BVPs. In the case of 

the linear problem, the Haar wavelet 

method is directly applied, whereas for the 

nonlinear problem, the quasilinearization 

technique is first used to linearize the 

equation, followed by the application of 

the Haar wavelet method. The approach is 

tested on two benchmark problems. 

Numerical results are compared with exact 

solutions for varying numbers of 

collocation points. The method 

demonstrates high accuracy, achieving a 

maximum absolute error on the order of 10-

8 which is considered sufficient for most 

practical applications. Although increasing 

the number of collocation points can 

enhance accuracy further, it also leads to 

higher computational costs. A notable 

strength of the proposed method is its 

ability to reduce maximum absolute error 

as the number of collocation points 

increases. Through this analysis, the study 

establishes that the method is stable, 

reliable, and effective in capturing sharp 

variations in the solution. 
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