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Abstract
System identification plays a crucial role in various fields like control systems, communication networks, biomedical signal 
processing, and many more. Among the different system identification techniques, infinite impulse response (IIR) system offer 
flexibility in capturing complex dynamics. However, accurately estimating the parameters of an IIR model can be challeng-
ing due to its inherent nonlinearity and potential instability. This paper presents a novel method for IIR system identification 
utilizing an enhanced arithmetic optimization algorithm (IAOA) in order to overcome this problem. The IAOA leverage the 
strengths of evolutionary computation and numerical optimization techniques to improve the precision and efficacy of the 
parameter estimation process. By combining concepts from genetic algorithms, particle swarm optimization, and simulated 
annealing, the proposed algorithm aims to overcome the limitations of traditional optimization methods and provide a more 
robust and effective solution. The performance of the IAOA is evaluated through comprehensive comparisons and simula-
tions with existing optimization methods on various benchmark IIR system identification problems. The results demonstrate 
its superiority in terms of parameter estimation and convergence.

Keywords  Infinite impulse response system · System identification · Improved arithmetic optimization · Whale 
optimization algorithm · Mean square error

1  Introduction

One of the digital system type utilized frequently in vari-
ous fields is the infinite impulse response (IIR) system. IIR 
system identification refers to the process of estimating the 
parameters of an IIR model based on observed input–out-
put data. An IIR model is a type of linear time-invariant 
system characterized by recursive feedback loops, which 
allows it to capture complex dynamics with fewer param-
eters compared to finite impulse response (FIR) systems 
(Mitra and Kuo 2006; Sayed 2003). The identification of 
IIR systems is essential in various fields, including target 
tracking (Zarai and Cherif 2021), signal processing (Pai 
et al. 2013; Le et al. 2021), control systems (Zhou et al. 
2014), communication system (Li et al. 2021), signal de-
noising, navigation and positioning (Zhang et al. 2021), data 

transmission (Czapiewska et al. 2020) and audio processing. 
By accurately evaluating the parameters of an IIR model, 
one can understand the underlying system behaviour, design 
appropriate control strategies, optimize system performance, 
and perform system analysis.

The IIR system identification problem can be defined as 
utilizing an adaptive IIR filter to characterize an unknown 
system (Dai et  al. 2009). Its goal is to get close to the 
unknown system coefficients using the adaptive filter coef-
ficients. In this case, the adaptive system and the unknown 
system both receive the same input signal, and their respec-
tive outputs are noted. The IIR system identification issue 
is an optimization problem that optimizes the error between 
the output of the adaptive system and the output of the 
unknown system (Janjanam et al. 2024).

Numerous real-world industries are plagued with optimi-
zation issues. As science and computing develop, a growing 
number of issues become more challenging for large-scale 
optimization. However, solving traditional mathematical 
programming algorithms is challenging. In order to solve 
problems involving global optimization, researchers have 
put forth a wide variety of meta-heuristic algorithms that 
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simulate the behaviour of natural objects or creatures. 
Metaheuristic algorithms are a fantastic tool for dealing 
with non-linear optimization issues because of the simplic-
ity of the underlying principle, insensitivity to beginning 
values, and simplicity of implementation. Additionally, it 
has been demonstrated that the meta-heuristic approach is 
more confident in solution accuracy and application because 
it is not dependent on the gradient of the objective function. 
The various metaheuristic algorithms applied for the IIR 
system identification problem are particle swarm optimiza-
tion (PSO) algorithm (Zou et al. 2018), flower pollination 
algorithm (FPA) (Singh et al. 2016), cat swarm optimization 
(CSO) algorithm (Panda et al. 2011), modified whale optimi-
zation algorithm (MWOA) (Luo et al. 2020), bat algorithm 
(BAT) (Saha et al. 2013), teacher learner based optimization 
(TLBO) (Singh et al. 2019) algorithm, gravitational search 
algorithm (GSA)(Rashedi et al. 2009; Jiang et al. 2015) and 
artificial intelligent optimization (Mohammadi et al. 2018).

Zuo et al. (2018) proposed the modified version of PSO 
for processing the IIR system identification problem . Singh 
et al. (2019) applied a human based optimization called 
TLBO for solving the problem of unknown IIR system 
identification. The simulated results using TLBO shows 
the effectiveness of the applied algorithm. Later, Luo et al. 
(2020) proposed an improved WOA with a rank-based 
mutation parameter called RWOA, to process the IIR sys-
tem identification problem. Singh et al. (2016) exploits the 
pollination process in flowers for IIR system identification. 
Further, IIR system was identified using CSO which is based 
on the behaviour of cats (Panda et al. 2011). According to 
the widely recognized no-free-lunch theorem (NFL) (Wolp-
ert and Macready 1997), no optimization method can out-
perform all other methods for any optimization problem. It 
is conceivable for an algorithm to perform well on one test 
example but poorly on other because the IIR model contains 
different cases. As a result, this has inspired academicians 
and researchers to look into the effectiveness of new algo-
rithms to address the IIR model identification challenge as 
well as problems in other fields.

The key contributions of this paper lie in two aspects. 
Firstly, a novel representation scheme is introduced to 
encode and decode IIR model parameters, facilitating the 
search space’s exploration and exploitation. This encod-
ing scheme optimally balances the exploration of a wide 
range of potential solutions and the exploitation of promis-
ing regions, thereby enhancing the convergence speed and 
global search capabilities of the algorithm. Secondly, a set 
of improved arithmetic operators is devised, inspired by 
the principles of numerical stability and precision. These 
operators aim to mitigate the effects of numerical difference 
and ill-conditioning that commonly arise during the optimi-
zation process. By employing these operators, the applied 

algorithm enhances the reliability of the parameter estimates 
and promotes the stability of the identified IIR system.

A recently employed population-based approach is the 
arithmetic optimization algorithm (AOA) (Abualigah et al. 
2021). Thus far, the AOA has been used for a variety of 
real-world optimization problems, such as the identifica-
tion of models (Xu et al. 2021), the tracking of maximum 
power points (Mirza et al. 2021), the segmentation of images 
(Abualigah et al. 2021), and the detection of structural dam-
age (Khatir et al. 2021). The typical AOA, however, has 
been discovered to have poor exploration and to be prone 
to get trapped in local optima (Xu et al. 2021; Abualigah 
et al. 2021). In order to overcome the issues of AOA, this 
paper applied improved arithmetic optimization algorithm 
(IAOA). Dynamic probability coefficient and triangular 
mutation techniques are employed to enhance AOA’s con-
vergence speed, and dynamic inertia weights are used to 
the capacity of AOA to exit the local optimal region. The 
obtained outcomes indicate that the stability, convergence 
speed and accuracy of the suggested algorithm are greatly 
enhanced, and IAOA performs exceptionally well in the 
optimization of the parameters of IIR system.

Comparing the proposed IAOA to the existing AOA, the 
following are its significant contributions: 

(1)	 To address its imperfections, the basic AOA’s explora-
tion and exploitation capabilities are improved.

(2)	 Since there are fewer algorithm-specific parameters 
required, the suggested IAOA is easier to construct than 
the conventional AOA.

(3)	 The use of triangular mutation strategy in IAOA pro-
vide the global optimal solution in terms of objective 
function value and parameter estimation avoiding local 
solution.

Compared to the basic AOA and other current methods, 
these enhancements make IAOA a more reliable and effec-
tive algorithm for IIR system identification, yielding bet-
ter performance. Also, this is the first attempt that IAOA is 
applied to IIR system identification problem. Two bench-
mark examples of unknown IIR system are used to show 
how well the proposed IAOA performs. The outcomes 
obtained by the AOA and IAOA are contrasted with those 
of other optimization techniques that have been documented 
in the literature.

The remainder of the paper is laid out as follows. The 
mathematical description of the IIR system identification 
problem is introduced in Sect. 2. Section 3 is a brief explana-
tion of the AOA and improved AOA. Simulation results for 
two Examples are presented in Sect. 4. Finally, in Sect. 5, a 
conclusion is formed.
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2 � Promlem statement

Since many signal processing issues may be treated as 
system identification problems, the adaptive IIR system 
has been extensively utilized in system identification. The 
adaptive algorithm’s main goal is to identify optimal sys-
tem coefficients so that the adaptive system’s output closely 
resembles that of an unknown system. Figure 1 displays the 
block diagram for an adaptive IIR system identification. The 
relationship between the input and output of the IIR system 
can be explained as follows (Luo et al. 2020; Singh et al. 
2019):

where (L > M) denotes the system’s order and x(k) and 
y(k) denote the system’s input and output, respectively. 
Let d0 = 1 . The IIR system’s transfer function is therefore 
described as follows:

The unknown system’s transfer function, Hp(z) , and the IIR 
system’s transfer function, Hm(z) , are both used in the design 
procedure. It is evident from Fig. 1 that the output of the 
IIR system is ym(k) , whereas the output of the unidentified 
system is y(k). The error signal is represented by the equa-
tion e(k) = y(k) − ym(k) . Therefore, the main objective of 
identification is to design a minimization problem, where 
the cost function D(w) can be written as follows:

(1)y(k) +

L∑
j=1

djy(k − j) =

M∑
i=0

bix(k − i)

(2)H(z) =
Y(z)

X(z)
=

a0 + a1z
−1 + ... + aMz

−M

1 + d1z
−1 + ... + dLz

−L

(3)D(w) =
1

K

K∑
n=1

e2(k)

where K is the length of input signal used in the objective 
function’s computation. The IIR model’s coefficient vectors 
are produced by D(w) which is equal to mean square error 
(MSE). The algorithm’s goal is to reduce the MSE by modi-
fying the coefficient vector of the transfer function Hp(z).

3 � Basic arithmetic optimization algorithm 
(AOA)

In 2021, Abualigah et al. developed the arithmetic optimi-
zation (AOA) which is a population-based meta-heuristic 
algorithm that utilizes the basic mathematical operations 
(addition, subtraction, multiplication, and division) while 
optimization (Habib and Cherri 1998). The distribution 
features of the basic arithmetic operations of multiplica-
tion (M), division (D), addition (A), and subtraction (S) are 
thus simulated by AOA (Abualigah et al. 2021). Like other 
meta-heuristic algorithms, AOA’s search procedure is bro-
ken down into two main stages: exploration and exploita-
tion. The exploration phase uses multiplication and division 
operators to update the search agents’ position (potential 
solutions), whereas the exploitation phase uses addition 
and subtraction operations. Figure 2 depicts the order of 
arithmetic operations and their superiority from outside to 
inside. The AOA is mathematically described in the subse-
quent subsections.

3.1 � Initialization phase

As demonstrated in Eq. (4), AOA starts the search process 
with a population of randomly distributed solutions (X), just 
like other population-based meta-heuristic algorithms. The 

Fig. 1   Block diagram of system identification problem using 
improved AOA

Fig. 2   The hierarchy and importance of arithmetic operations (from 
the outside to the inside)
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solution is updated whenever the better solution is obtained 
for the current iteration.

where n represents the number of design variables in the 
problem, N the number of candidate solutions in the popula-
tion, and xi,j the jth design variable of the ith candidate solu-
tion in the initial population.

The AOA switches between the exploitation and explora-
tion stages of the search process using a dynamic function 
known as math optimizer accelerated (MOA). The following 
equation gives the definition of the MOA function:

where MOA(Citer) is the value of MOA at current iteration; 
Miter denotes the maximum iterations; Citer is the present 
iteration number and ranges between 1 and Miter ; and Min 
and Max are the minimum and maximum values of the 
MOA, respectively. According to Abualigah et. al (2021) 
recommendation , Min and Max are set in this work to 0.2 
and 0.9, respectively.

The multiplication (M) and division (D) operators are used 
to explore the search space when MOA(Citer) < c1 , but the 
addition (A) and subtraction (S) operators are used to exploit 
the search space’s promising regions when MOA(Citer) > c1 . 
The pseudorandom number c1 has a uniform distribution and 
ranges from 0 to 1. Equation (5) shows that MOA increases 
linearly from Min + (Max −Min)∕Miter at the first iteration 
(i.e., Citer = 1) to Max at the last iteration (i.e., Citer = Miter ). 
MOA(Citer) is able to seamlessly transition between the explo-
ration and exploitation phases as a result.

(4)X =

⎡
⎢⎢⎢⎢⎢⎣

x11 … x1j … x1n
… … … … …

xi1 … xij … xin
… … … … …

xN1 … xNj … xNn

⎤
⎥⎥⎥⎥⎥⎦

(5)MOA(Citer) = Min + Citer × (
Max −Min

Miter

)

3.2 � Exploration phase

As indicated, in the exploration phase of AOA, the arithmetic 
operations of multiplication (M) and division (D) are used to 
guide the investigation of the search area. The AOA’s explora-
tion phase is carried out in accordance with the next position 
update rule (Abualigah et al. 2021):

where Xi,j(Citer + 1) represents the jth position of the ith solu-
tion in next iteration. The best solution thus far is best(Xi) . � 
is a constant added in the denominator to ensure numerical 
stability, � is a control parameter for modifying the search 
procedure, lv and uv are the lower and upper value of the 
jth position. Moreover, NOP stands for a function known as 
numerical optimizer probability, and is defined as follows:

where � is a sensitive parameter representing the accuracy 
of exploitation over the iterations and is set to 5 (Abualigah 
et al. 2021), and NOP(Citer) specifies the value of the coef-
ficient NOP at the current iteration number.

3.3 � Exploitation phase

The subtraction (S) and addition (A) operators provide 
small step sizes that result in a very dense population of 
candidate solutions, as opposed to the large step sizes 
produced by division (D) and multiplication (M), which 
produce a widely spread population of candidate solutions. 
The exploitation phase of the AOA is based on the position 
updating rule that follows (Abualigah et al. 2021):

(6)Xi,j(Citer + 1) =

⎧⎪⎨⎪⎩

best(Xj) ÷ (NOP + 𝜀) × ((uvj − lvj) × 𝛽 + lvj), c2 < 0.5

best(Xj) × NOP × ((uvj − lvj) × 𝛽 + lvj), otherwise

(7)NOP(Citer) = 1 −
C
1∕�

iter

M
1∕�

iter

(8)Xi,j(Citer + 1) =

⎧⎪⎨⎪⎩

best(Xj) − (NOP + 𝜀) × ((uvj − lvj) × 𝛽 + lvj), c3 < 0.5

best(Xj) + NOP × ((uvj − lvj) × 𝛽 + lvj), otherwise
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Algorithm 1   Improved arithmetic optimization algorithm

3.4 � Proposed improved arithmetic optimization 
algorithm (IAOA)

Shi and Eberhart were the first to propose inertia weights; 
larger inertia weights are advantageous for global explora-
tion while smaller inertia weights are advantageous for local 
exploitation (Shi and Eberhart 1998). Therefore, to increase 
the search efficiency improved version of AOA (IAOA) is 
proposed in this paper. IAOA incorporates dynamic inertia 
weights and mutation probability coefficients (Fang et al. 
2022). By varying the inertia weights dynamically, the algo-
rithm makes the balance between exploration and exploitation 
more effectively. Also, by dynamically adjusting the mutation 
probability, the IAOA maintains diversity in the population 

and prevent premature convergence, which significantly 
improve its convergence speed compared to the basic AOA 
(Fang et al. 2022). This means it can find optimal solutions 
faster, which is crucial for real-time applications like IIR sys-
tem identification. These weights decrease nonlinearly and 
exponentially with the number of iterations. The dynamic 
inertia weights are given in Eq. (9):

where winit and wfinal are the maximum and minimum values 
of inertia weights, rand is random value lies around 1. When 
the total of dynamic inertia weights is incorporated Eqs. (6) 
and (8) are updated as Eqs. (10) and (11)

(9)w(Citer) = rand × winit(
winit

wfinal

)

1

1+
Citer
Miter

(10)Xi,j(Citer + 1) =

{
w(Citer) × best(Xj) ÷ (NOP + 𝜀) × ((uvj − lvj) × 𝛽 + lvj), c2 < 0.5

w(Citer) × best(Xj) × NOP × ((uvj − lvj) × 𝛽 + lvj), otherwise

(11)
Xi,j(Citer + 1) =

{
w(Citer) ⋆ best(Xj) − (NOP + 𝜀) × ((uvj − lvj) × 𝛽 + lvj), c3 < 0.5

w(Citer) ⋆ best(Xj) + NOP × ((uvj − lvj) × 𝛽 + lvj), otherwise
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3.5 � Dynamic mutation probability coefficient 
and triangular mutation technique

In order to give individuals a chance to enter in different 
search spaces, this paper’s “mutation” operation employs 
a mutation probability coefficient that is dynamic and 

increases as the number of iteration increases.. This effec-
tively broadens the search space and improves the capacity 
of the algorithm to depart from the local optimum solu-
tion. The coefficient of dynamic mutation probability, p is 
given by Eq. (12).

Fig. 3   Flow chart of IAOA
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The triangle mutation technique (Fan and Lampinen 2003) 
fully utilizes each individual’s information in the population, 
allowing each individual’s knowledge to cross over with 
each other, increasing the population’s variety and prevent-
ing the algorithm from reaching a local optimum during the 
search phase. Equation (13) displays one of the triangular 
mutation formulas:

The three randomly chosen individuals are designated as Xr1 , 
Xr2 , and Xr3 , and the weights of the perturbed part are indi-
cated by (Citer2 − Citer1) , (Citer3 − Citer2) , and (Citer1 − Citer3) . 
The triangle mutation approach is comparable to a genetic 
algorithm’s cross mutation, which combines the information 
of random people. This tactic helps to increase the algo-
rithm’s ability to exit local minima by preventing individuals 
from updating themselves solely in the vicinity of a single 
local optimal location. The flow chart of IAOA is shown in 
Fig. 3. The pseudocode of IAOA is given in Algorithm 1.

4 � Simulation analysis

An comprehensive experiment is carried out on two dif-
ferent types of benchmark IIR plants, with orders two, 
and three, which are selected from Janjanam et al. (2024), 
Luo et al. (2020) and Singh et al. (2019, 2016) in order 
to confirm the effectiveness of the IAOA for identifying 
unknown IIR systems. The results obtained using IAOA 
was compared with that of the five existing algorithms 

(12)p = 0.2 + 0.5 ×
Citer

Miter

(13)
X(C

iter
) = (X

r1 + X
r2 + X

r3)∕3 + (C
iter2 − C

iter1) ⋆ (X
r1 − X

r2) + (C
iter3

− C
iter2) ⋆ (X

r2 − X
r3) + (C

iter1 − C
iter3) ⋆ (X

r3 − X
r1)

Fig. 4   Comparison of evaluated parameters for Example 1 Case 1 Fig. 5   Comparison of best optimization runs for Example 1 Case 1

Fig. 6   Boxplot for Example 1 Case 1

Fig. 7   Bar plot of IAOA with other existing algorithms for Example 
1 Case 1
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named AOA, WOA, CSO, GSA, and PSO. The reasons 
behind selecting these algorithms are based on certain 
criteria. These criteria include popularity and acceptance, 
diversity, performance in similar domains and availabil-
ity and ease of implementation. These algorithms (AOA, 
WOA, CSO, GSA, PSO) fit for the above mentioned cri-
teria and so as selected for comparison of results obtained 
using IAOA. The MSE, which is described in Sect. 2, is 
considered as the performance metric. The simulation was 
carried out on MATLAB 2019a.

Example 1  For the first experiment, a second-order system 
is considered whose system function is given by Janjanam 
et al. (2024), Luo et al. (2020) and Singh et al. (2019):

This second-order system is modelled by taking two 
cases.

Case 1 The system function of the second-order system 
modelled using second-order (same-order) system is given 
by

a0, a1, d1 and d2 are the numerator and denominator coef-
ficients to be estimated. Table  1 shows the estimated 
parameters obtained by the six algorithms, and it demon-
strates that AOA and IAOA outperformed the other four 
algorithms in terms of coefficient estimation. This shows 
that the IAOA has a good ability to gather precise esti-
mated parameter values. The numerical values of the 
parameter are shown in Fig 4. The statistical findings in 
terms of MSE are shown in Table 2. The best evaluated 
values of MSE using IAOA, AOA, WOA, CSO, GSA, and 

(14)Hp(z) =
0.05 − 0.4z−1

1 − 1.314z−1 + 0.25z−2

(15)Hs(z) =
a0 + a1z

−1

1 − d1z
−1 − d2z

−2

PSO are 4.7677 × 10−08 , 2.3667 × 10−07 , 6.3297 × 10−07 , 
8.1722 × 10−07 , 1.8818 × 10−06 and 7.2069 × 10−06 respec-
tively. The convergence curve (MSE in dB) for the Example 
1 Case 1 is demonstrated in Fig. 5 which reveals that IAOA 
has faster convergence than the other compared algorithms. 
Moreover, Box plots provide a concise summary of the data 
distribution. They offer a visual representation of the key 
statistical measures and characteristics without overwhelm-
ing the viewer with detailed data points. The box plots for 
the employed algorithms in Example 1 are depicted in Fig. 6. 
The MSE comparison of IAOA with other employed algo-
rithms is also shown in terms of Bar plot (Fig. 7). It is evi-
dent from the results obtained that IAOA achieves lower 
(best) MSE values, indicating its effectiveness in minimizing 
the error and converging to the better solutions. The com-
putational complexity of the IAOA is compared with that of 
the existing algorithms and it is found that IAOA is compu-
tationally same (approximately) to that of AOA, WOA and 
PSO but more fast in comparison to CSO and GSA. This is 
illustrated in terms of runtime listed in Table 9.

Case 2 The second-order system can be modeled by a 
reduced-order IIR system. The transfer function of the 
reduced-order system is given by

The simulated results obtained using IAOA and other 
existing algorithms in terms of MSE and MSE in dB are 
listed in Table 3. It is apparent from Table 3 that the IAOA 
outperformed the other employed (AOA, WOA, CSO, 
GSA and PSO) algorithms in identifying the unknown 
IIR system offering the best MSE values. The best MSE 
value obtained using IAOA, AOA, WOA, CSO, GSA and 
PSO are 4.0802 × 10−04 , 2.2770 × 10−03 , 3.1200 × 10−03 , 
4.4932 × 10−03  ,  8.1680 × 10−03  ,  a n d  1.4087 × 10−02 

(16)Hr(z) =
a0

1 − d1z
−1

Fig. 8   Comparison of best optimization runs for Example 1 Case 2 Fig. 9   Comparison of evaluated parameters for Example 2 Case 1
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respectively. The superiority of IAOA is also demonstrated 
in terms of convergence curves for the second-order sys-
tem modelled using reduced-order (first-order) system. The 
IAOA converged much more quickly and had the lowest 
MSE values when compared to the other five algorithms, 
as shown in Fig. 8.

Example 2  The second experiment consider the third order 
plant whose transfer function is given by Eq. (17) (Janjanam 
et al. 2024; Luo et al. 2020; Singh et al. 2019).

Case 1 It is possible to define this third-order plant mod-
elled as a third-order (same-order) IIR system whose transfer 
function is given in Eq. (18).

(17)Hp(z) =
−0.2 − 0.4z−1 + 0.5z−2

1 − 0.6z−1 + 0.25z−2 − 0.2z−2

Table 1   Parameters of second-
order IIR system evaluated 
using IAOA, AOA, WOA, GSA 
and PSO algorithms

Parameters Actual value IAOA AOA WOA CSO GSA PSO

a0 0.05 0.0506 0.0515 0.0527 0.0452 0.0475 0.0469
a1

−0.4 −0.4011 −0.3882 −0.3824 −0.3762 −0.3811 −0.3340
d1 1.1314 1.1314 1.1303 1.1390 1.1557 1.1316 1.1289
d2

−0.25 −0.2501 −0.2492 −0.2468 −0.2315 −0.2506 −0.2873

Table 2   Result comparison in terms of MSE values evaluated using IAOA, AOA, WOA, CSO, GSA and PSO for Example 1 in case of same-
order system

Bold values signifies the minimum value of MSE obtained by the algorithm among existing algorithms

Algorithm MSE MSE (in dB)

Best Worst Average SD Best Worst Average

IAOA �.���� × ��−�� �.���� × ��−�� �.���� × ��−�� �.���� × ��−�� −���.���� −���.��� −���.���

AOA 2.3667 × 10−07 2.9050 × 10−05 2.7400 × 10−06 4.3256 × 10−11 −132.517 −90.7370 −111.2450

WOA 6.3297 × 10−07 1.0441 × 10−04 7.7718 × 10−06 5.8016 × 10−05 −123.9724 −79.6250 −102.4160

CSO 8.1722 × 10−07 1.7080 × 10−05 2.8554 × 10−06 1.3579 × 10−05 −121.573 −95.3500 −110.8867

GSA 1.8818 × 10−06 8.1157 × 10−05 1.0131 × 10−05 1.3579 × 10−04 −114.5087 −81.8135 −99.8867

PSO 7.2069 × 10−06 4.7090 × 10−04 4.9837 × 10−05 3.6521 × 10−04 −102.8450 −66.5414 −86.0490

Table 3   Result comparison in terms of MSE values evaluated using IAOA, AOA, WOA, CSO, GSA and PSO for Example 1 in case of reduced-
order system

Bold values signifies the minimum value of MSE obtained by the algorithm among existing algorithms

Algorithm MSE MSE (in dB)

Best Worst Average SD Best Worst Average

IAOA �.���� × ��−�� �.���� × ��−�� �.���� × ��−�� �.���� × ��−�� −��.���� −��.���� −��.����

AOA 2.2770 × 10−03 2.0900 × 10−02 1.3418 × 10−02 3.4060 × 10−03 −52.8527 −33.5971 −37.4579

WOA 3.1200 × 10−03 6.1205 × 10−01 3.2366 × 10−02 4.3256 × 10−03 −50.1169 −24.2643 −29.7982

CSO 4.4926 × 10−03 9.7650 × 10−02 5.1235 × 10−02 1.3509 × 10−03 −46.9500 −20.2066 −25.8087

GSA 8.1680 × 10−03 2.3917 × 10−02 1.5781 × 10−02 2.9079 × 10−03 −41.7577 −32.4320 −36.0820

PSO 1.4087 × 10−02 1.7964 × 10−02 1.6220 × 10−02 2.2091 × 10−03 −37.0236 −34.9119 −35.7990

Table 4   Parameters of third-
order IIR system evaluated 
using IAOA, AOA, WOA, CSO, 
GSA and PSO algorithms

Parameters Actual value IAOA AOA WOA CSO GSA PSO

a0
−0.20 −0.2005 −0.2156 −0.2385 −0.2567 −0.2815 - 0.2497

a1
−0.40 −0.4011 −0.3982 −0.3824 −0.3671 −0.3811 −0.3341

a2 0.50 0.5000 0.5007 0.4923 0.4687 0.4875 0.4598
d1 0.60 0.6014 0.6033 0.6290 0.5703 0.5296 0.5286
d2

−0.25 −0.2501 −0.2492 −0.2468 −0.2456 −0.2186 −0.2314
d3 0.20 0.2001 0.2080 0.2055 0.1966 0.1875 0.1982
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Table 5   Result comparison in terms of MSE values evaluated using IAOA, AOA, WOA, CSO, GSA and PSO for Example 2 in case of same-
order system

Bold values signifies the minimum value of MSE obtained by the algorithm among existing algorithms

Algorithm MSE MSE (in dB)

Best Worst Average SD Best Worst Average

IAOA �.���� × ��−�� �.���� × ��−�� �.���� × ��−�� �.���� × ��−�� −��.���� −��.���� −��.����

AOA 4.9285 × 10−04 5.8000 × 10−02 5.5000 × 10−03 4.3256 × 10−02 −66.1457 −24.7270 −45.2450

WOA 6.7759 × 10−04 0.0609 7.6000 × 10−03 5.3261 × 10−08 −63.3807 −24.3060 −42.4160

CSO 0.0022 0.0540 0.0090 1.3579 × 10−09 −53.1973 −25.3509 −40.8867

GSA 0.0012 0.1095 0.1123 1.3579 × 10−02 −58.5387 −19.2085 −39.0275

PSO 0.0040 0.1489 0.0177 3.6521 × 10−02 −48.0554 −16.5414 −35.0490

Table 6   Result comparison in 
terms of MSE values evaluated 
using IAOA, AOA, WOA, CSO, 
GSA and PSO for Example 2 in 
case of reduced-order system

Bold values signifies the minimum value of MSE obtained by the algorithm among existing algorithms

Algorithm MSE MSE (in dB)

Best Worst Average SD Best Worst Average

IAOA �.���� × ��−�� �.���� �.���� �.���� × ��−�� −��.���� −�.���� −��.����

AOA 3.1145 × 10−02 0.5867 0.4681 6.1196 × 10−02 −30.1322 −4.6317 −6.5932

WOA 0.6073 0.9941 0.5806 4.3261 × 10−04 −4.3319 −0.0514 −4.7225

CSO 0.2442 1.0054 0.6190 4.0394 × 10−07 −12.2451 0.0468 −4.1662

GSA 0.1892 1.1095 0.5623 3.4679 × 10−02 −14.4616 0.9025 −5.0006

PSO 0.8040 1.7609 0.9037 4.6571 × 10−02 −1.8949 4.9147 −0.8795

Table 7   r values evaluated for 
the Wilcoxon rank-sum test for 
two IIR models

IAOA Vs AOA WOA CSO GSA PSO

Example 1
Case 1 1.0457 × 10−10 3.3341 × 10−09 0.3811 × 10−08 3.8241 × 10−05 7.3982 × 10−06

Case 2 0.0572 2.5497 × 10−07 3.2815 × 10−04 0.5385 0.7156

Example 2
Case 1 3.8514 × 10−11 1.6120 5.5574 × 10−09 6.1114 × 10−07 0.1174

Case 2 7.4074 × 10−11 7.4074 × 10−09 7.4074 × 10−08 7.4074 × 10−05 7.4074 × 10−09

Fig. 10   Comparison of best optimization runs for Example 2 Case 1 Fig. 11   Boxplot for Example 2 Case 1
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In this subsection the performance IAOA is evaluated 
for the third-order system. Following 500 iterations for 
each algorithm, Table  4 lists the detailed comparison 
of the best estimated unknown system parameter values 
using IAOA and other existing algorithms. These evalu-
ated parameters using IAOA and other existing methods 
are also demonstrated in Fig. 9. Analyzing the obtained 
model parameter values with IAOA reveals that it gener-
ally yield the parameter values near to the actual values in 
comparison to AOA and other existing algorithms. Fur-
thermore, statistical results in terms of best, worst, aver-
age and standard deviation (SD) are evaluated and are 
listed in Table 5. The convergence curve for Example 2 
Case 1 is shown in Fig. 10. It is demonstrated in Fig. 10 
and Table 5 that analogous to the second-order system, 
IAOA convergence speed is faster and achieves lower MSE 
value compared to other existing algorithms, indicating 
its effectiveness in minimizing the error and converg-
ing to superior solutions. Box plot for Example 2 Case 
1 is demonstrated in Fig. 11. Based on the observations, 
the IAOA and other existing algorithms can be placed as 
IAOA>AOA>WOA>CSO>GSA>PSO.

Case 2 The third-order plant described in Eq. (19) is 
modeled in this part using a second-order IIR as follows:

Figure 9 compares the convergence of all six methods and 
makes it evident that the minimal MSE is acquired by the 
IAOA. The performance of PSO was the lowest of all the 
algorithms and stagnated in an early stage of the optimization 
process, whereas the CSO and GSA gained the almost same 
minimum MSE value. The MSE values are listed in Table 6 
and best MSE values observed for IAOA, AOA, WOA, CSO, 
GSA and PSO are 1.4782 × 10−02 , 3.1145 × 10−02 , 0.6073, 
0.2442, 0.1892, and 0.8040 respectively. These results 
proved that IAOA is superior in achieving lower MSE value 

(18)Hs(z) =
a0 + a1z

−1 + a2z
−2

1 − d1z
−1 − d2z

−2 − d3z
−3

(19)Hs(z) =
a0 + a1z

−1

1 − d1z
−1 − d2z

−2

and hence effective for unknown IIR system identification 
compared to other existing algorithms.

To assess the difference in significance between the IAOA 
and the other methods on two types of benchmark IIR plants, 
the authors additionally use the Wilcoxon nonparametric sta-
tistical test in their simulations (Wilcoxon 1945). According 
to the stochastic nature of meta-heuristics, the statistical test 
must be performed. Derrac et al. (2011) and Mirjalili and 
Lewis (2013). r values < 0.05 demonstrate the results’ sta-
tistically significant superiority. Table 7 provides a summary 
of the r values’ statistical findings. Take note that the Table 7 
highlights r values > 0.05 . The statistical Wilcoxon sum test 
also shows the superiority of IAOA in comparison to other 
algorithms and the same can be verified from Table 7.

4.1 � Computational complexity of IAOA 
in comparison to other employed algorithms

The computational complexity of an optimization algorithm 
depends on factors such as population size (N), number of 
iterations (T), dimension of the search space (D), length of 
input signal (K) and function evaluation cost (F). The com-
parison of the computational complexity of Improved AOA 
(IAOA), Standard AOA, Whale optimization algorithm 
(WOA), Cat Swarm Optimization (CSO), Gravitational 
Search Algorithm (GSA), and Particle Swarm Optimiza-
tion (PSO) is given below. Each algorithm updates solution 

Table 8   The comparison of the 
complexity analysis of IAOA 
with other employed algorithms

Algorithms Population ini-
tialization

Fitness evaluation Update process Overall complexity

IAOA O(ND) O(NKD) O(2ND) O(TNKD)
AOA O(ND) O(NKD) O(ND) O(TNKD)
WOA O(ND) O(NKD) O(ND) O(TNKD)
CSO O(ND) O(NKD) O(tNKD) O(TtNKD)
GSA O(ND) O(NKD) O(N2

D) O(TN2
D + TNKD)

PSO O(ND) O(NKD) O(ND) O(TNKD)

Table 9   Runtime comparison of IAOA in comparison to other 
employed algorithms for Example 1 Case 1 and Example 2 Case 1

Algorithms No. of itera-
tions

Runtime (in s)

Example 1 Example 2

IAOA 500 8.0451 9.5603
AOA 500 7.5896 9.1425
WOA 500 8.5468 10.8742
CSO 500 14.5468 17.4562
GSA 500 15.8362 16.7803
PSO 500 8.3783 11.4567
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iteratively while evaluating fitness using MSE, which 
involves filtering and computing errors. The complexity of 
AOA is described by the following factors: 

1.	 Complexity to initialize population: O(ND)
2.	 Fitness evaluation complexity: O(NKD)
3.	 Complexity of position update: O(ND)
4.	 Overall complexity: O(T × (ND + NKD)) = O(TNKD)

The complexity of IAOA is comparable to AOA, but with 
extra dynamic inertia and mutation probability coefficient. 
Complexity due to dynamic inertia: O(ND), complexity due 
to mutation probability: O(ND), and the total complexity: 
O(T × (ND + NKD + 2ND)) = O(TNKD) . So, the complex-
ity of IAOA is similar to AOA but slightly more expensive 
due to additional mutation and inertia updates. CSO is more 
expensive O(TtNKD) due to its seeking mode requiring mul-
tiple evaluations (t as no of trials). GSA is the most expen-
sive O(TN2D + TNKD) due to the pairwise gravitational 
force computation. The comparison is illustrated in Table 8 
for the employed algorithms.

The complexity of the employed algorithms are also cal-
culated in terms of runtime analysis for Example 1 Case 1. 
The runtime is noted for each employed algorithm and is 
shown in Table 9. It is evident from Table 9 that IAOA has 
an execution time of 8.0451 s whcih is greater than AOA 
which is 7.5896 s for the 500 iterations. This is due to the 
presence of dynamic inertia and mutation probability con-
stant parameters.

5 � Conclusions

This paper discussed the unknown IIR system identification 
using the improved AOA. Two Examples have been con-
sidered for the unknown system identification. In the first 
example, a second order unknown system is identified using 
the same-order (second-order) and the reduced-order (first-
order) system. The second example consider the third-order 
IIR system which is being identified with the same-order 
and reduced-order system. Unknown system parameters and 
convergence curve are considered as the performance meas-
ures for IAOA. The results obtained using IAOA have been 
compared with the other existing algorithms namely AOA, 
WOA, CSO, GSA, and PSO. IAOA exhibits faster con-
vergence compared to existing optimization algorithms. It 
reduces the time required to identify the system parameters, 
making it an efficient choice for IIR system identification. 

However, this work focused on the evaluation of a second-
order and third-order IIR system, and the scalability of 
IAOA for higher-order systems remains unexplored. Per-
formance may degrade in more complex system models. The 
effectiveness of IAOA depends on parameter tuning (muta-
tion probability, inertia weight, etc.), which requires empiri-
cal adjustment and may not generalize across all problem 
instances. Here, the authors primarily considered noise-free 
systems with linear parameter estimation. The performance 
of IAOA in noisy, nonlinear, or time-varying environments 
remains unexplored. For future work, IAOA can be applied 
to higher-order, multivariable and real world IIR systems. 
Also, IAOA can be extended to handle nonlinear system 
identification such as Hammerstein and Volterra model.
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